Spaces:
Running
Running
File size: 34,445 Bytes
8f8b054 cacf045 2a77201 340b448 d1b5811 90c33f0 044aa43 04efe9c b6a7e6d 7fb0a20 c6aa746 d4383d0 c6aa746 4e72019 ff9221d 4e72019 c6aa746 4e72019 ff9221d 4e72019 c6aa746 d05c994 7fb0a20 d05c994 f5ccec5 c82ad5f 1d8fa75 f23306e 275f351 50fe69d 5f28bed 275f351 5f28bed f23306e b32bf67 f23306e c82ad5f ba7035a 133120b f23306e f5ccec5 25155a2 133120b 0034c8b f23306e 0034c8b 7d97044 f5ccec5 f23306e ceb94a2 f23306e f5ccec5 c6aa746 fc197f1 c6aa746 fc197f1 c6aa746 b6a7e6d c6aa746 b6a7e6d d4383d0 c6aa746 b6a7e6d 2967ca1 c6aa746 244e2b5 86755ca f938ef0 b6a7e6d dc661de b6a7e6d 86755ca f23306e f938ef0 86755ca b6a7e6d f23306e 86755ca 3c003bc f23306e 4e48cc5 f23306e 7c0043a 86755ca f23306e b6a7e6d f23306e b6a7e6d f23306e b6a7e6d 7cd2fc2 b6a7e6d ad8c1ce b6a7e6d ff9221d b6a7e6d ad8c1ce b6a7e6d ff9221d b6a7e6d 2b9ed28 6b8b0b6 7cd2fc2 5ccfb52 b6a7e6d 2b9ed28 5ccfb52 b6a7e6d 5ccfb52 b6a7e6d 5ccfb52 2a77201 11dd9d5 7cd2fc2 11dd9d5 7cd2fc2 11dd9d5 7cd2fc2 a8bcd0c 11dd9d5 7cd2fc2 a8bcd0c 11dd9d5 6d6f3c6 11dd9d5 d1b5811 7cd2fc2 11dd9d5 7cd2fc2 11dd9d5 469d918 11dd9d5 d1b5811 11dd9d5 469d918 11dd9d5 ef6f553 11dd9d5 d1b5811 11dd9d5 6d6f3c6 11dd9d5 6d6f3c6 469d918 11dd9d5 469d918 11dd9d5 469d918 11dd9d5 469d918 f938ef0 d1b5811 64d3617 122a1ed 9167024 761563c f938ef0 761563c 469d918 64d3617 761563c 64d3617 9167024 7c0043a 64d3617 4e48cc5 64d3617 7c0043a 9167024 64d3617 122a1ed 64d3617 9167024 64d3617 5fc4eb8 7ff3365 54d4718 376c4a7 54d4718 7fe40fc 37dedc6 7ff3365 734643a 7ff3365 11dd9d5 ef6f553 11dd9d5 ef6f553 11dd9d5 b75d54e 2b9ed28 11dd9d5 cc312e8 2587718 469d918 11dd9d5 2587718 6d6f3c6 2587718 469d918 11dd9d5 bd2ccaf 11dd9d5 ef6f553 11dd9d5 d1b5811 11dd9d5 d1b5811 a392854 11dd9d5 06b54b2 11dd9d5 0875164 a392854 11dd9d5 0875164 11dd9d5 70176eb 2a27166 11dd9d5 d1b5811 11dd9d5 2b9ed28 bef8ac3 6d6f3c6 7cd2fc2 11dd9d5 7cd2fc2 6d6f3c6 11dd9d5 734643a 6d6f3c6 0875164 11dd9d5 6d6f3c6 11dd9d5 8f8b054 b6a7e6d ca7400a b1d3510 ec91fe9 8f8b054 6d6f3c6 8f8b054 3d0b315 c9b91a3 64c79fa cbea7da b19fbcc 8f8b054 96126a5 31d2467 96126a5 64c79fa b19fbcc cc312e8 64c79fa 5b7979c c6aa746 11dd9d5 b19fbcc 5b7979c c9b91a3 2195d41 06ce8d9 cc312e8 64c79fa cc312e8 c9b91a3 11dd9d5 c6aa746 64ad2b4 50fe69d 11dd9d5 b32bf67 50fe69d c6aa746 cc0e392 50fe69d 5b7979c b19fbcc bc49788 b19fbcc c6aa746 8f8b054 b19fbcc 469d918 c9b91a3 01bd7f3 cc312e8 eaaf563 e838b45 cc312e8 e838b45 cc312e8 3988f3f 376c4a7 3988f3f eaaf563 64c79fa cc312e8 c9b91a3 b6a7e6d 17cf03c b6a7e6d b6261fc 17cf03c b6a7e6d 17cf03c 254eeb2 17cf03c b6a7e6d 6d6f3c6 c6aa746 cbea7da 254eeb2 b6a7e6d 44fdbbf 254eeb2 17cf03c b6a7e6d 17cf03c 44fdbbf 2b9ed28 b19fbcc bc49788 b19fbcc e02f4a3 ba6a63c db552e8 54d4718 db552e8 54d4718 db552e8 fe8e38f 7586b67 6054491 fe8e38f 82dba6a fe8e38f ba6a63c e02f4a3 a440102 0cd7194 8f8b054 4d63ad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 |
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import f1_score
import seaborn as sns
#################### BEAM PREDICTION #########################}
def beam_prediction_task(data_percentage, task_complexity, theme='Dark'):
# Folder naming convention based on input_type, data_percentage, and task_complexity
raw_folder = f"images/raw_{data_percentage/100:.1f}_{task_complexity}"
embeddings_folder = f"images/embedding_{data_percentage/100:.1f}_{task_complexity}"
# Process raw confusion matrix
raw_cm = compute_average_confusion_matrix(raw_folder)
if raw_cm is not None:
raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
plot_confusion_matrix_beamPred(raw_cm,
classes=np.arange(raw_cm.shape[0]),
title=f"Confusion Matrix (Raw Channels)\n{data_percentage}% data, {task_complexity} beams",
save_path=raw_cm_path,
theme=theme)
raw_img = Image.open(raw_cm_path)
else:
raw_img = None
# Process embeddings confusion matrix
embeddings_cm = compute_average_confusion_matrix(embeddings_folder)
if embeddings_cm is not None:
embeddings_cm_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
plot_confusion_matrix_beamPred(embeddings_cm,
classes=np.arange(embeddings_cm.shape[0]),
title=f"Confusion Matrix (LWM Embeddings)\n{data_percentage}% data, {task_complexity} beams",
save_path=embeddings_cm_path,
theme=theme)
embeddings_img = Image.open(embeddings_cm_path)
else:
embeddings_img = None
return raw_img, embeddings_img
# Function to compute the F1-score based on the confusion matrix
def compute_f1_score(cm):
# Compute precision and recall
TP = np.diag(cm)
FP = np.sum(cm, axis=0) - TP
FN = np.sum(cm, axis=1) - TP
precision = TP / (TP + FP)
recall = TP / (TP + FN)
# Handle division by zero in precision or recall
precision = np.nan_to_num(precision)
recall = np.nan_to_num(recall)
# Compute F1 score
f1 = 2 * (precision * recall) / (precision + recall)
f1 = np.nan_to_num(f1) # Replace NaN with 0
return np.mean(f1) # Return the mean F1-score across all classes
def plot_confusion_matrix_beamPred(cm, classes, title, save_path, theme='Dark'):
# Compute the average F1-score
avg_f1 = compute_f1_score(cm)
# Choose the color scheme based on the user's mode
if theme == 'Dark':
plt.style.use('dark_background') # Use dark mode styling
#text_color = 'white'
text_color = 'gray'
#cmap = 'cividis' # Dark-mode-friendly colormap
cmap = 'coolwarm'
else:
plt.style.use('default') # Use default (light) mode styling
#text_color = 'black'
text_color = 'gray'
cmap = 'Blues' # Light-mode-friendly colormap
plt.figure(figsize=(10, 10))
# Plot the confusion matrix with a colormap compatible for the mode
ax = sns.heatmap(cm, cmap=cmap, cbar=True)
cbar = ax.collections[0].colorbar
cbar.ax.yaxis.set_tick_params(color=text_color)
cbar.ax.yaxis.set_tick_params(labelcolor=text_color)
# Add F1-score to the title
plt.title(f"{title}\nF1 Score: {avg_f1:.3f}", color=text_color, fontsize=23)
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, color=text_color, fontsize=14) # Adjust text color based on the mode
plt.yticks(tick_marks, classes, color=text_color, fontsize=14) # Adjust text color based on the mode
plt.ylabel('True label', color=text_color, fontsize=20)
plt.xlabel('Predicted label', color=text_color, fontsize=20)
plt.tight_layout()
plt.savefig(save_path, transparent=True) # Transparent to blend with the site background
plt.close()
# Return the saved image
return Image.open(save_path)
def compute_average_confusion_matrix(folder):
confusion_matrices = []
max_num_labels = 0
# First pass to determine the maximum number of labels
for file in os.listdir(folder):
if file.endswith(".csv"):
data = pd.read_csv(os.path.join(folder, file))
num_labels = len(np.unique(data["Target"]))
max_num_labels = max(max_num_labels, num_labels)
# Second pass to calculate the confusion matrices and pad if necessary
for file in os.listdir(folder):
if file.endswith(".csv"):
data = pd.read_csv(os.path.join(folder, file))
y_true = data["Target"]
y_pred = data["Top-1 Prediction"]
num_labels = len(np.unique(y_true))
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred, labels=np.arange(max_num_labels))
# If the confusion matrix is smaller, pad it to match the largest size
if cm.shape[0] < max_num_labels:
padded_cm = np.zeros((max_num_labels, max_num_labels))
padded_cm[:cm.shape[0], :cm.shape[1]] = cm
confusion_matrices.append(padded_cm)
else:
confusion_matrices.append(cm)
if confusion_matrices:
avg_cm = np.mean(confusion_matrices, axis=0)
return avg_cm
else:
return None
########################## LOS/NLOS CLASSIFICATION #############################3
# Paths to the predefined images folder
LOS_PATH = "images_LoS"
# Define the percentage values
percentage_values_los = np.linspace(0.001, 1, 20) * 100 #np.linspace(0.05, 1, 20) * 100 # np.linspace(0.001, 1, 20) * 100 # 20 percentage values
from sklearn.metrics import f1_score
import seaborn as sns
# Function to compute confusion matrix, F1-score and plot it with dark mode style
def plot_confusion_matrix_from_csv(csv_file_path, title, save_path, light_mode=False):
# Load CSV file
data = pd.read_csv(csv_file_path)
# Extract ground truth and predictions
y_true = data['Target']
y_pred = data['Top-1 Prediction']
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Compute F1-score
f1 = f1_score(y_true, y_pred, average='macro') # Macro-average F1-score
# Set styling based on light or dark mode
if light_mode:
plt.style.use('default') # Light mode styling
text_color = 'black'
cmap = 'Blues' # Light-mode-friendly colormap
else:
plt.style.use('dark_background') # Dark mode styling
text_color = 'gray'
#cmap = 'magma' # Dark-mode-friendly colormap
cmap = 'coolwarm'
plt.figure(figsize=(5, 5))
# Plot the confusion matrix with the chosen colormap
sns.heatmap(cm, annot=True, fmt="d", cmap=cmap, cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
# Add F1-score to the title
plt.title(f"{title}\nF1 Score: {f1:.3f}", color=text_color, fontsize=18)
# Customize tick labels for light/dark mode
plt.xticks([0.5, 1.5], labels=['NLoS', 'LoS'], color=text_color, fontsize=12)
plt.yticks([0.5, 1.5], labels=['NLoS', 'LoS'], color=text_color, fontsize=12)
plt.ylabel('True label', color=text_color, fontsize=14)
plt.xlabel('Predicted label', color=text_color, fontsize=14)
plt.tight_layout()
# Save the plot as an image
plt.savefig(save_path, transparent=True) # Use transparent to blend with the website
plt.close()
# Return the saved image
return Image.open(save_path)
# Function to load confusion matrix based on percentage and input_type
def display_confusion_matrices_los(percentage):
#percentage = percentage_values_los[percentage_idx]
# Construct folder names
raw_folder = os.path.join(LOS_PATH, f"raw_{percentage/100:.3f}_los_noTraining")
embeddings_folder = os.path.join(LOS_PATH, f"embedding_{percentage/100:.3f}_los_noTraining")
# Process raw confusion matrix
raw_csv_file = os.path.join(raw_folder, f"test_predictions_raw_{percentage/100:.3f}_los.csv")
raw_cm_img_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
raw_img = plot_confusion_matrix_from_csv(raw_csv_file,
f"Confusion Matrix (Raw Channels)\n{percentage:.1f}% data",
raw_cm_img_path)
# Process embeddings confusion matrix
embeddings_csv_file = os.path.join(embeddings_folder, f"test_predictions_embedding_{percentage/100:.3f}_los.csv")
embeddings_cm_img_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
embeddings_img = plot_confusion_matrix_from_csv(embeddings_csv_file,
f"Confusion Matrix (LWM Embeddings)\n{percentage:.1f}% data",
embeddings_cm_img_path)
return raw_img, embeddings_img
# Main function to handle user choice
def handle_user_choice(choice, percentage=None, uploaded_file=None, emb_type='CLS Embedding'):
if choice == "Use Default Dataset":
raw_img, embeddings_img = display_confusion_matrices_los(percentage)
return raw_img, embeddings_img, "" # Return empty string for console output
elif choice == "Upload Dataset":
if uploaded_file is not None:
raw_img, embeddings_img, console_output = process_hdf5_file(uploaded_file, percentage, emb_type)
return raw_img, embeddings_img, console_output
else:
return "Please upload a dataset", "Please upload a dataset", "" # Return empty string for console output
else:
return "Invalid choice", "Invalid choice", "" # Return empty string for console output
# Custom class to capture print output
class PrintCapture(io.StringIO):
def __init__(self):
super().__init__()
self.output = []
def write(self, txt):
self.output.append(txt)
super().write(txt)
def get_output(self):
return ''.join(self.output)
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage):
#percentage = percentage_values_los[percentage_idx]
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
# Check if the images exist
if os.path.exists(raw_image_path):
raw_image = Image.open(raw_image_path)
else:
raw_image = create_random_image() # Use a fallback random image
if os.path.exists(embeddings_image_path):
embeddings_image = Image.open(embeddings_image_path)
else:
embeddings_image = create_random_image() # Use a fallback random image
return raw_image, embeddings_image
def los_nlos_classification(file, percentage):
if file is not None:
raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage)
return raw_cm_image, emb_cm_image, console_output # Returning all three: two images and console output
else:
raw_image, embeddings_image = display_predefined_images(percentage)
return raw_image, embeddings_image, "" # Return an empty string for console output when no file is uploaded
# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
random_image = np.random.rand(*size, 3) * 255
return Image.fromarray(random_image.astype('uint8'))
import importlib.util
# Function to dynamically load a Python module from a given file path
def load_module_from_path(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
# Function to split dataset into training and test sets based on user selection
def split_dataset(channels, labels, percentage):
#percentage = percentage_values_los[percentage_idx] / 100
num_samples = channels.shape[0]
train_size = int(num_samples * percentage/100)
print(f'Number of Training Samples: {train_size}')
indices = np.arange(num_samples)
np.random.shuffle(indices)
train_idx, test_idx = indices[:train_size], indices[train_size:]
train_data, test_data = channels[train_idx], channels[test_idx]
train_labels, test_labels = labels[train_idx], labels[test_idx]
return train_data, test_data, train_labels, test_labels
# Function to calculate Euclidean distance between a point and a centroid
def euclidean_distance(x, centroid):
return np.linalg.norm(x - centroid)
import torch
def classify_based_on_distance(train_data, train_labels, test_data):
# Compute the centroids for the two classes
centroid_0 = train_data[train_labels == 0].mean(dim=0) # Use torch.mean
centroid_1 = train_data[train_labels == 1].mean(dim=0) # Use torch.mean
predictions = []
for test_point in test_data:
# Compute Euclidean distance between the test point and each centroid
dist_0 = euclidean_distance(test_point, centroid_0)
dist_1 = euclidean_distance(test_point, centroid_1)
predictions.append(0 if dist_0 < dist_1 else 1)
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
def plot_confusion_matrix(y_true, y_pred, title, light_mode=False):
cm = confusion_matrix(y_true, y_pred)
# Calculate F1 Score
f1 = f1_score(y_true, y_pred, average='weighted')
#plt.style.use('dark_background')
# Set styling based on light or dark mode
if light_mode:
plt.style.use('default') # Light mode styling
text_color = 'black'
cmap = 'Blues' # Light-mode-friendly colormap
else:
plt.style.use('dark_background') # Dark mode styling
text_color = 'gray'
#cmap = 'magma' # Dark-mode-friendly colormap
cmap = 'coolwarm'
plt.figure(figsize=(5, 5))
# Plot the confusion matrix with a dark-mode compatible colormap
sns.heatmap(cm, annot=True, fmt="d", cmap=cmap, cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
# Add F1-score to the title
plt.title(f"{title}\nF1 Score: {f1:.3f}", color=text_color, fontsize=18)
# Customize tick labels for dark mode
plt.xticks([0.5, 1.5], labels=['NLoS', 'LoS'], color=text_color, fontsize=12)
plt.yticks([0.5, 1.5], labels=['NLoS', 'LoS'], color=text_color, fontsize=12)
plt.ylabel('True label', color=text_color, fontsize=14)
plt.xlabel('Predicted label', color=text_color, fontsize=14)
plt.tight_layout()
# Save the plot as an image
plt.savefig(f"{title}.png", transparent=True) # Use transparent to blend with the dark mode website
plt.close()
# Return the saved image
return Image.open(f"{title}.png")
def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
torch.manual_seed(42)
N = output_emb.shape[0]
indices = torch.randperm(N)
test_split_index = int(N * 0.20)
test_indices = indices[:test_split_index]
remaining_indices = indices[test_split_index:]
train_split_index = int(len(remaining_indices) * train_percentage / 100)
print(f'Training Size: {train_split_index} out of remaining {len(remaining_indices)}')
print(f'Test Size: {test_split_index}')
train_indices = remaining_indices[:train_split_index]
train_emb = output_emb[train_indices]
test_emb = output_emb[test_indices]
train_raw = output_raw[train_indices]
test_raw = output_raw[test_indices]
train_labels = labels[train_indices]
test_labels = labels[test_indices]
return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels
# Store the original working directory when the app starts
original_dir = os.getcwd()
def process_hdf5_file(uploaded_file, percentage, emb_type='CLS Embedding'):
capture = PrintCapture()
sys.stdout = capture # Redirect print statements to capture
try:
model_repo_url = "https://huggingface.co/wi-lab/lwm"
model_repo_dir = "./LWM"
# Step 1: Clone the repository if not already done
if not os.path.exists(model_repo_dir):
print(f"Cloning model repository from {model_repo_url}...")
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
# Step 2: Verify the repository was cloned and change the working directory
repo_work_dir = os.path.join(original_dir, model_repo_dir)
if os.path.exists(repo_work_dir):
os.chdir(repo_work_dir) # Change the working directory only once
print(f"Changed working directory to {os.getcwd()}")
#print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content
else:
print(f"Directory {repo_work_dir} does not exist.")
return
# Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
inference_path = os.path.join(os.getcwd(), 'inference.py')
# Load lwm_model
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
# Load input_preprocess
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
# Load inference
inference = load_module_from_path("inference", inference_path)
# Step 4: Load the model from lwm_model module
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = lwm_model.lwm.from_pretrained(device=device).float()
# Step 5: Load the HDF5 file and extract the channels and labels
with h5py.File(uploaded_file.name, 'r') as f:
channels = np.array(f['channels']).astype(np.complex64)
labels = np.array(f['labels']).astype(np.int32)
print(f"Loaded dataset with {channels.shape[0]} samples.")
channels = channels * (10**(-3-np.floor(np.log10(np.abs(np.mean(channels).real)))))
# Step 7: Tokenize the data using the tokenizer from input_preprocess
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
# Step 7: Perform inference using the functions from inference.py
if emb_type == 'Channel Embedding':
embedding_type = 'channel_emb'
elif emb_type == 'CLS Embedding':
embedding_type = 'cls_emb'
output_emb = inference.lwm_inference(preprocessed_chs, embedding_type, model, device)
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
print(f"Output Embeddings Shape: {output_emb.shape}")
print(f"Output Raw Shape: {output_raw.shape}")
print(f'percentage_value: {percentage}')
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1),
output_raw.view(len(output_raw),-1),
labels,
percentage)
# Step 8: Perform classification using the Euclidean distance for both raw and embeddings
#print(f'train_data_emb: {train_data_emb.shape}')
#print(f'train_labels: {train_labels.shape}')
#print(f'test_data_emb: {test_data_emb.shape}')
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
# Step 9: Generate confusion matrices for both raw and embeddings
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
return raw_cm_image, emb_cm_image, capture.get_output()
except Exception as e:
return str(e), str(e), capture.get_output()
finally:
# Always return to the original working directory after processing
os.chdir(original_dir)
sys.stdout = sys.__stdout__ # Reset print statements
######################## Define the Gradio interface ###############################
js_code = """
() => {
const isDarkMode = window.matchMedia && window.matchMedia('(prefers-color-scheme: dark)').matches;
return isDarkMode ? 'dark' : 'light';
}
"""
with gr.Blocks(css="""
.slider-container {
display: inline-block;
margin-right: 50px;
text-align: center;
}
.explanation-box {
font-size: 16px;
font-style: italic;
color: #4a4a4a;
padding: 15px;
background-color: #f0f0f0;
border-radius: 10px;
margin-bottom: 20px;
}
.bold-highlight {
font-weight: bold;
color: #2c3e50;
font-size: 18px;
text-align: center;
margin-bottom: 20px;
}
#console-output {
background-color: #ffffff; /* Light background for light mode */
color: #000000; /* Dark text color for contrast */
padding: 10px;
border-radius: 5px;
}
.plot-title {
font-weight: bold;
color: #2c3e50;
}
""") as demo:
# Contact Section
gr.Markdown("""
<div style="text-align: center;">
<a target="_blank" href="https://www.wi-lab.net">
<img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;">
</a>
<a target="_blank" href="mailto:lwmwireless@gmail.com" style="margin-left: 10px;">
<img src="https://img.shields.io/badge/email-lwmwireless@gmail.com-blue.svg?logo=gmail" alt="Email">
</a>
</div>
""")
gr.Markdown("""
<div class="bold-highlight">
π Explore the pre-trained <b>LWM Model<b> here:
<a target="_blank" href="https://huggingface.co/wi-lab/lwm">https://huggingface.co/wi-lab/lwm</a>
</div>
""")
# Tab for Beam Prediction Task
with gr.Tab("Beam Prediction Task"):
#gr.Markdown("### Beam Prediction Task")
# Explanation section with creative spacing and minimal design
gr.Markdown("""
<div style="background-color: var(--primary-background); padding: 15px; border-radius: 10px; color: var(--text-primary);">
<h3 style="color: var(--text-primary);">π‘ <b>Sub-6GHz to mmWave Beam Prediction Task</b></h3>
<ul style="padding-left: 20px;">
<li><b>π― Goal</b>: Predict the strongest <b>mmWave beam</b> from a predefined codebook using Sub-6 GHz channels.</li>
<li><b>βοΈ Adjust Settings</b>: Use the sliders to control the training data percentage and task complexity (beam count) to explore model performance.</li>
<li><b>π§ Inferences</b>:
<ul>
<li>π First, the LWM model extracts features.</li>
<li>π€ Then, the downstream residual 1D-CNN model (500K parameters) makes beam predictions.</li>
</ul>
</li>
<li><b>πΊοΈ Dataset</b>: A combination of six scenarios from the DeepMIMO dataset (excluded from LWM pre-training) highlights the model's strong generalization abilities.</li>
</ul>
</div>
""")
with gr.Row():
with gr.Column():
data_percentage_slider = gr.Slider(label="Data Percentage for Training", minimum=10, maximum=100, step=10, value=10)
task_complexity_dropdown = gr.Dropdown(label="Task Complexity (Number of Beams)", choices=[16, 32, 64, 128, 256], value=16)
#theme_dropdown = gr.Dropdown(label="Select Theme", choices=['Light', 'Dark'], value='Light')
with gr.Row():
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=500)
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=500)
theme_dropdown = 'Dark'
# Update the confusion matrices whenever sliders change
data_percentage_slider.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
task_complexity_dropdown.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
#theme_dropdown.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown, theme_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
# Add a conclusion section at the bottom
gr.Markdown("""
<div class="explanation-box">
The LWM embeddings demonstrate remarkable generalization capabilities, enabling impressive performance even with minimal training samples. This highlights their ability to effectively handle diverse tasks with limited data.
</div>
""")
# Separate Tab for LoS/NLoS Classification Task
with gr.Tab("LoS/NLoS Classification Task"):
#gr.Markdown("### LoS/NLoS Classification Task")
# Explanation section with creative spacing
gr.Markdown("""
<div style="background-color: var(--primary-background); padding: 15px; border-radius: 10px; color: var(--text-primary);">
<h3 style="color: var(--text-primary);">π <b>LoS/NLoS Classification Task</b></h3>
<ul style="padding-left: 20px;">
<li><b>π― Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight) with very small LWM CLS embeddings.</li>
<li><b>π Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>H5</b> format.</li>
<li><b>π‘ Custom Dataset Requirements:</b>
<ul>
<li>π‘ <b>channels</b> array: Shape (N,32,32), rows: 32 antennas at BS, columns: 32 subcarriers</li>
<li>π·οΈ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
</ul>
</li>
<li><b>π Tip 1</b>: Instructions for organizing your dataset are available at the bottom of the page.</li>
<li><b>π Tip 2</b>: As the computations and inference are performed on HuggingFace CPUs, please use small datasets for faster demo experience (say <400 samples). Clone the model from <a href="https://huggingface.co/wi-lab/lwm" target="_blank">here</a> and use any number of samples locally.</li>
<li><b>π Tip 3</b>: Your dataset will be normalized automatically based on outdoor environments. </li>
<li><b>πΌ No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
</ul>
</div>
""")
# Radio button for user choice: predefined data or upload dataset
choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"],
label="Choose how to proceed",
value="Use Default Dataset")
percentage_slider_los = gr.Slider(minimum=float(percentage_values_los[0]),
maximum=float(percentage_values_los[-1]),
step=float((percentage_values_los[-1] - percentage_values_los[0]) / (len(percentage_values_los) - 1)),
value=float(percentage_values_los[0]),
label="Percentage of Data for Training",
interactive=True)
# File uploader for dataset (only visible if user chooses to upload a dataset)
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"], visible=False)
# Dropdown for embedding type, also only visible when "Upload Dataset" is selected
emb_type = gr.Dropdown(choices=["Channel Embedding", "CLS Embedding"],
value="CLS Embedding",
label="Embedding Type",
visible=False)
# Confusion matrices display
with gr.Row():
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300)
output_textbox = gr.Textbox(label="Console Output", lines=10, elem_id="console-output")
# Update the visibility of file_input and emb_type based on user choice
def toggle_file_input_and_emb_type(choice):
visible = (choice == "Upload Dataset")
return gr.update(visible=visible), gr.update(visible=visible)
# Change visibility of file input and embedding type dropdown based on choice
choice_radio.change(fn=toggle_file_input_and_emb_type,
inputs=[choice_radio],
outputs=[file_input, emb_type])
# When percentage slider changes (for predefined data)
percentage_slider_los.change(fn=handle_user_choice,
inputs=[choice_radio, percentage_slider_los, file_input, emb_type],
outputs=[raw_img_los, embeddings_img_los, output_textbox])
# Layout for the UI - this part does NOT need .render(), Gradio will render these automatically
with gr.Row():
file_input # No need for .render()
emb_type # No need for .render()
# Add a conclusion section at the bottom
gr.Markdown("""
<div class="explanation-box">
Despite their compact size (1/32 of the raw channels), LWM CLS embeddings capture rich, holistic information about the channels. This makes them exceptionally well-suited for tasks like LoS/NLoS classification, especially when working with very limited data.
</div>
""")
gr.Markdown("""
<div class="explanation-box">
To create a custom dataset, you'll need to structure your data with 32x32 channel matrices, where the rows correspond to antennas at the base station and the columns represent subcarriers. Hereβs how to organize and store the channels and labels in an H5 file format for the demo:
</div>
```python
# How to pack channels and labels in a h5 file format as a custom dataset for the demo:
import h5py
with h5py.File('dataset.h5', 'w') as hdf:
hdf.create_dataset('channels', data=channels)
hdf.create_dataset('labels', data=labels)
print("Dataset saved!")
""")
gr.Markdown("""
<div class="explanation-box">
To use your preferred DeepMIMO scenarios for the custom dataset, please
<a href="https://huggingface.co/wi-lab/lwm" target="_blank">clone the model and datasets</a>
and follow the instructions below:
</div>
```python
from input_preprocess import DeepMIMO_data_gen deepmimo_data_cleaning label_gen # Import required modules from the model repository
import numpy as np
scenario_names = np.array([
"city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
"city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
])
scenario_name = scenario_names[0] # Select the scenario by choosing its index.
deepmimo_data = DeepMIMO_data_gen(scenario_name) # Generates ray-traced wireless channels for the selected scenario.
cleaned_deepmimo_data = deepmimo_data_cleaning(deepmimo_data) # Filters out users with no direct path to the base station (i.e., users with zero-valued channels).
channels = np.squeeze(np.array(cleaned_deepmimo_data), axis=1) # The "channels" array is now prepared for packing into the custom dataset in H5 format.
labels = label_gen('LoS/NLoS Classification', deepmimo_data, scenario_name) # Generates labels for each user, classifying them as Line-of-Sight (LoS) or Non-Line-of-Sight (NLoS), and prepares the "labels" array for inclusion in the custom dataset H5 file.
```
""")
#with gr.Tab("LWM Model and Framework"):
# gr.Image("images/lwm_model_v2.png")
# gr.Markdown("This figure depicts the offline pre-training and online embedding generation process for LWM. The channel is divided into fixed-size patches, which are linearly embedded and combined with positional encodings before being passed through a Transformer encoder. During self-supervised pre-training, some embeddings are masked, and LWM leverages self-attention to extract deep features, allowing the decoder to reconstruct the masked values. For downstream tasks, the generated LWM embeddings enhance performance.")
# Launch the app
if __name__ == "__main__":
demo.launch()
|