wi-lab commited on
Commit
376c4a7
Β·
verified Β·
1 Parent(s): 54d4718

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -382,7 +382,7 @@ def plot_confusion_matrix(y_true, y_pred, title, light_mode=False):
382
 
383
  def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
384
 
385
- torch.manual_seed(seed)
386
 
387
  N = output_emb.shape[0]
388
  indices = torch.randperm(N)
@@ -623,7 +623,7 @@ with gr.Blocks(css="""
623
  </ul>
624
  </li>
625
  <li><b>πŸ”— Tip 1</b>: Instructions for organizing your dataset are available at the bottom of the page.</li>
626
- <li><b>πŸ”— Tip 2</b>: As the computations and inference are performed on HuggingFace CPUs, please use small datasets for faster demo experience (say <500 samples). </li>
627
  <li><b>πŸ”— Tip 3</b>: Your dataset will be normalized automatically based on outdoor environments. </li>
628
  <li><b>πŸ’Ό No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
629
  </ul>
 
382
 
383
  def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
384
 
385
+ torch.manual_seed(42)
386
 
387
  N = output_emb.shape[0]
388
  indices = torch.randperm(N)
 
623
  </ul>
624
  </li>
625
  <li><b>πŸ”— Tip 1</b>: Instructions for organizing your dataset are available at the bottom of the page.</li>
626
+ <li><b>πŸ”— Tip 2</b>: As the computations and inference are performed on HuggingFace CPUs, please use small datasets for faster demo experience (say <400 samples). Clone the model from <a href="https://huggingface.co/wi-lab/lwm" target="_blank">here</a> and use any number of samples locally.</li>
627
  <li><b>πŸ”— Tip 3</b>: Your dataset will be normalized automatically based on outdoor environments. </li>
628
  <li><b>πŸ’Ό No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
629
  </ul>