wi-lab commited on
Commit
54d4718
·
verified ·
1 Parent(s): 734643a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -3
app.py CHANGED
@@ -154,7 +154,7 @@ def compute_average_confusion_matrix(folder):
154
  LOS_PATH = "images_LoS"
155
 
156
  # Define the percentage values
157
- percentage_values_los = np.linspace(0.001, 1, 20) * 100 # 20 percentage values
158
 
159
  from sklearn.metrics import f1_score
160
  import seaborn as sns
@@ -381,6 +381,9 @@ def plot_confusion_matrix(y_true, y_pred, title, light_mode=False):
381
 
382
 
383
  def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
 
 
 
384
  N = output_emb.shape[0]
385
  indices = torch.randperm(N)
386
  test_split_index = int(N * 0.20)
@@ -632,7 +635,7 @@ with gr.Blocks(css="""
632
 
633
  percentage_slider_los = gr.Slider(minimum=float(percentage_values_los[0]),
634
  maximum=float(percentage_values_los[-1]),
635
- step=float(percentage_values_los[1] - percentage_values_los[0]),
636
  value=float(percentage_values_los[0]),
637
  label="Percentage of Data for Training", interactive=True)
638
 
@@ -681,8 +684,11 @@ with gr.Blocks(css="""
681
  """)
682
  gr.Markdown("""
683
  <div class="explanation-box">
684
- To use your preferred DeepMIMO scenarios for the custom dataset, please [clone the model and datasets](https://huggingface.co/wi-lab/lwm) and follow the instructions below:
 
 
685
  </div>
 
686
 
687
  ```python
688
  from input_preprocess import DeepMIMO_data_gen deepmimo_data_cleaning label_gen # Import required modules from the model repository
 
154
  LOS_PATH = "images_LoS"
155
 
156
  # Define the percentage values
157
+ percentage_values_los = np.linspace(0.05, 1, 20) * 100 # np.linspace(0.001, 1, 20) * 100 # 20 percentage values
158
 
159
  from sklearn.metrics import f1_score
160
  import seaborn as sns
 
381
 
382
 
383
  def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
384
+
385
+ torch.manual_seed(seed)
386
+
387
  N = output_emb.shape[0]
388
  indices = torch.randperm(N)
389
  test_split_index = int(N * 0.20)
 
635
 
636
  percentage_slider_los = gr.Slider(minimum=float(percentage_values_los[0]),
637
  maximum=float(percentage_values_los[-1]),
638
+ step=float((percentage_values_los[-1] - percentage_values_los[0]) / (len(percentage_values_los) - 1)), #step=float(percentage_values_los[1] - percentage_values_los[0]),
639
  value=float(percentage_values_los[0]),
640
  label="Percentage of Data for Training", interactive=True)
641
 
 
684
  """)
685
  gr.Markdown("""
686
  <div class="explanation-box">
687
+ To use your preferred DeepMIMO scenarios for the custom dataset, please
688
+ <a href="https://huggingface.co/wi-lab/lwm" target="_blank">clone the model and datasets</a>
689
+ and follow the instructions below:
690
  </div>
691
+
692
 
693
  ```python
694
  from input_preprocess import DeepMIMO_data_gen deepmimo_data_cleaning label_gen # Import required modules from the model repository