Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -61,36 +61,44 @@ def compute_f1_score(cm):
|
|
61 |
f1 = np.nan_to_num(f1) # Replace NaN with 0
|
62 |
return np.mean(f1) # Return the mean F1-score across all classes
|
63 |
|
64 |
-
def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
|
65 |
# Compute the average F1-score
|
66 |
avg_f1 = compute_f1_score(cm)
|
67 |
|
68 |
-
#
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
plt.figure(figsize=(10, 10))
|
71 |
-
|
72 |
# Plot the confusion matrix with a dark-mode compatible colormap
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
# Add F1-score to the title
|
77 |
-
plt.title(f"{title}\n(F1 Score: {avg_f1:.3f})", color=
|
78 |
-
|
79 |
tick_marks = np.arange(len(classes))
|
80 |
-
plt.xticks(tick_marks, classes, color=
|
81 |
-
plt.yticks(tick_marks, classes, color=
|
82 |
|
83 |
-
plt.ylabel('True label', color=
|
84 |
-
plt.xlabel('Predicted label', color=
|
85 |
plt.tight_layout()
|
86 |
-
|
87 |
# Save the plot as an image
|
88 |
-
plt.savefig(save_path, transparent=True) #
|
89 |
plt.close()
|
90 |
-
|
91 |
# Return the saved image
|
92 |
return Image.open(save_path)
|
93 |
|
|
|
94 |
def compute_average_confusion_matrix(folder):
|
95 |
confusion_matrices = []
|
96 |
max_num_labels = 0
|
@@ -140,7 +148,7 @@ from sklearn.metrics import f1_score
|
|
140 |
import seaborn as sns
|
141 |
|
142 |
# Function to compute confusion matrix, F1-score and plot it with dark mode style
|
143 |
-
def plot_confusion_matrix_from_csv(csv_file_path, title, save_path):
|
144 |
# Load CSV file
|
145 |
data = pd.read_csv(csv_file_path)
|
146 |
|
@@ -153,29 +161,37 @@ def plot_confusion_matrix_from_csv(csv_file_path, title, save_path):
|
|
153 |
|
154 |
# Compute F1-score
|
155 |
f1 = f1_score(y_true, y_pred, average='macro') # Macro-average F1-score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
# Set dark mode styling
|
158 |
-
plt.style.use('dark_background')
|
159 |
plt.figure(figsize=(5, 5))
|
160 |
-
|
161 |
-
# Plot the confusion matrix with
|
162 |
-
sns.heatmap(cm, annot=True, fmt="d", cmap=
|
163 |
-
|
164 |
# Add F1-score to the title
|
165 |
-
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color=
|
166 |
-
|
167 |
-
# Customize tick labels for dark mode
|
168 |
-
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=
|
169 |
-
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=
|
170 |
-
|
171 |
-
plt.ylabel('True label', color=
|
172 |
-
plt.xlabel('Predicted label', color=
|
173 |
plt.tight_layout()
|
174 |
-
|
175 |
# Save the plot as an image
|
176 |
-
plt.savefig(save_path, transparent=True) # Use transparent to blend with the
|
177 |
plt.close()
|
178 |
-
|
179 |
# Return the saved image
|
180 |
return Image.open(save_path)
|
181 |
|
@@ -308,35 +324,45 @@ def classify_based_on_distance(train_data, train_labels, test_data):
|
|
308 |
|
309 |
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
|
310 |
|
311 |
-
def plot_confusion_matrix(y_true, y_pred, title):
|
312 |
cm = confusion_matrix(y_true, y_pred)
|
313 |
-
|
314 |
# Calculate F1 Score
|
315 |
f1 = f1_score(y_true, y_pred, average='weighted')
|
316 |
|
317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
plt.figure(figsize=(5, 5))
|
319 |
-
|
320 |
-
# Plot the confusion matrix with a
|
321 |
-
sns.heatmap(cm, annot=True, fmt="d", cmap=
|
322 |
-
|
|
|
323 |
# Add F1-score to the title
|
324 |
-
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color=
|
325 |
-
|
326 |
-
# Customize tick labels for dark mode
|
327 |
-
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=
|
328 |
-
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=
|
329 |
-
|
330 |
-
plt.ylabel('True label', color=
|
331 |
-
plt.xlabel('Predicted label', color=
|
332 |
plt.tight_layout()
|
333 |
-
|
334 |
# Save the plot as an image
|
335 |
-
plt.savefig(
|
336 |
plt.close()
|
337 |
-
|
338 |
# Return the saved image
|
339 |
-
return Image.open(
|
340 |
|
341 |
def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
|
342 |
N = output_emb.shape[0]
|
|
|
61 |
f1 = np.nan_to_num(f1) # Replace NaN with 0
|
62 |
return np.mean(f1) # Return the mean F1-score across all classes
|
63 |
|
64 |
+
def plot_confusion_matrix_beamPred(cm, classes, title, save_path, light_mode=True):
|
65 |
# Compute the average F1-score
|
66 |
avg_f1 = compute_f1_score(cm)
|
67 |
|
68 |
+
# Choose the color scheme based on the mode
|
69 |
+
if light_mode:
|
70 |
+
plt.style.use('default') # Use default (light) mode styling
|
71 |
+
text_color = 'black'
|
72 |
+
cmap = 'Blues' # Light-mode-friendly colormap
|
73 |
+
else:
|
74 |
+
plt.style.use('dark_background') # Use dark mode styling
|
75 |
+
text_color = 'white'
|
76 |
+
cmap = 'cividis' # Dark-mode-friendly colormap
|
77 |
+
|
78 |
plt.figure(figsize=(10, 10))
|
79 |
+
|
80 |
# Plot the confusion matrix with a dark-mode compatible colormap
|
81 |
+
sns.heatmap(cm, cmap=cmap, cbar=True, linecolor='white', vmin=0, vmax=cm.max(), alpha=0.85)
|
82 |
+
|
|
|
83 |
# Add F1-score to the title
|
84 |
+
plt.title(f"{title}\n(F1 Score: {avg_f1:.3f})", color=text_color, fontsize=14)
|
85 |
+
|
86 |
tick_marks = np.arange(len(classes))
|
87 |
+
plt.xticks(tick_marks, classes, color=text_color, fontsize=14) # Adjust text color based on the mode
|
88 |
+
plt.yticks(tick_marks, classes, color=text_color, fontsize=14) # Adjust text color based on the mode
|
89 |
|
90 |
+
plt.ylabel('True label', color=text_color, fontsize=14)
|
91 |
+
plt.xlabel('Predicted label', color=text_color, fontsize=14)
|
92 |
plt.tight_layout()
|
93 |
+
|
94 |
# Save the plot as an image
|
95 |
+
plt.savefig(save_path, transparent=True) # Transparent to blend with the site background
|
96 |
plt.close()
|
97 |
+
|
98 |
# Return the saved image
|
99 |
return Image.open(save_path)
|
100 |
|
101 |
+
|
102 |
def compute_average_confusion_matrix(folder):
|
103 |
confusion_matrices = []
|
104 |
max_num_labels = 0
|
|
|
148 |
import seaborn as sns
|
149 |
|
150 |
# Function to compute confusion matrix, F1-score and plot it with dark mode style
|
151 |
+
def plot_confusion_matrix_from_csv(csv_file_path, title, save_path, light_mode=True):
|
152 |
# Load CSV file
|
153 |
data = pd.read_csv(csv_file_path)
|
154 |
|
|
|
161 |
|
162 |
# Compute F1-score
|
163 |
f1 = f1_score(y_true, y_pred, average='macro') # Macro-average F1-score
|
164 |
+
|
165 |
+
# Set styling based on light or dark mode
|
166 |
+
if light_mode:
|
167 |
+
plt.style.use('default') # Light mode styling
|
168 |
+
text_color = 'black'
|
169 |
+
cmap = 'Blues' # Light-mode-friendly colormap
|
170 |
+
else:
|
171 |
+
plt.style.use('dark_background') # Dark mode styling
|
172 |
+
text_color = 'white'
|
173 |
+
cmap = 'magma' # Dark-mode-friendly colormap
|
174 |
|
|
|
|
|
175 |
plt.figure(figsize=(5, 5))
|
176 |
+
|
177 |
+
# Plot the confusion matrix with the chosen colormap
|
178 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap=cmap, cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
|
179 |
+
|
180 |
# Add F1-score to the title
|
181 |
+
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color=text_color, fontsize=14)
|
182 |
+
|
183 |
+
# Customize tick labels for light/dark mode
|
184 |
+
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
|
185 |
+
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
|
186 |
+
|
187 |
+
plt.ylabel('True label', color=text_color, fontsize=12)
|
188 |
+
plt.xlabel('Predicted label', color=text_color, fontsize=12)
|
189 |
plt.tight_layout()
|
190 |
+
|
191 |
# Save the plot as an image
|
192 |
+
plt.savefig(save_path, transparent=True) # Use transparent to blend with the website
|
193 |
plt.close()
|
194 |
+
|
195 |
# Return the saved image
|
196 |
return Image.open(save_path)
|
197 |
|
|
|
324 |
|
325 |
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
|
326 |
|
327 |
+
def plot_confusion_matrix(y_true, y_pred, title, save_path="confusion_matrix.png", light_mode=True):
|
328 |
cm = confusion_matrix(y_true, y_pred)
|
329 |
+
|
330 |
# Calculate F1 Score
|
331 |
f1 = f1_score(y_true, y_pred, average='weighted')
|
332 |
|
333 |
+
# Choose the color scheme based on the mode
|
334 |
+
if light_mode:
|
335 |
+
plt.style.use('default') # Light mode styling
|
336 |
+
text_color = 'black'
|
337 |
+
cmap = 'Blues' # Light-mode-friendly colormap
|
338 |
+
else:
|
339 |
+
plt.style.use('dark_background') # Dark mode styling
|
340 |
+
text_color = 'white'
|
341 |
+
cmap = 'magma' # Dark-mode-friendly colormap
|
342 |
+
|
343 |
plt.figure(figsize=(5, 5))
|
344 |
+
|
345 |
+
# Plot the confusion matrix with a colormap compatible for the mode
|
346 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap=cmap, cbar=False, annot_kws={"size": 12},
|
347 |
+
linewidths=0.5, linecolor='white')
|
348 |
+
|
349 |
# Add F1-score to the title
|
350 |
+
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color=text_color, fontsize=14)
|
351 |
+
|
352 |
+
# Customize tick labels for light/dark mode
|
353 |
+
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
|
354 |
+
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
|
355 |
+
|
356 |
+
plt.ylabel('True label', color=text_color, fontsize=12)
|
357 |
+
plt.xlabel('Predicted label', color=text_color, fontsize=12)
|
358 |
plt.tight_layout()
|
359 |
+
|
360 |
# Save the plot as an image
|
361 |
+
plt.savefig(save_path, transparent=True) # Transparent to blend with website background
|
362 |
plt.close()
|
363 |
+
|
364 |
# Return the saved image
|
365 |
+
return Image.open(save_path)
|
366 |
|
367 |
def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
|
368 |
N = output_emb.shape[0]
|