Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -31,50 +31,91 @@ class PrintCapture(io.StringIO):
|
|
31 |
def get_output(self):
|
32 |
return ''.join(self.output)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Function to create random images for LoS/NLoS classification results
|
35 |
def create_random_image(size=(300, 300)):
|
36 |
random_image = np.random.rand(*size, 3) * 255
|
37 |
return Image.fromarray(random_image.astype('uint8'))
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# Function to split dataset into training and test sets based on user selection
|
40 |
-
def
|
41 |
-
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
|
46 |
-
|
47 |
-
split_index = int(N * percentage_values[percentage_idx] / 10) # Convert percentage index to percentage value
|
48 |
-
print(f'Training Size: {split_index}')
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
test_indices = indices[split_index:]
|
53 |
-
|
54 |
-
# Select the same indices from both output_emb and output_raw
|
55 |
-
train_emb = output_emb[train_indices]
|
56 |
-
test_emb = output_emb[test_indices]
|
57 |
|
58 |
-
|
59 |
-
test_raw = output_raw[test_indices]
|
60 |
|
61 |
-
|
62 |
-
|
|
|
63 |
|
64 |
-
|
65 |
|
66 |
-
# Function to calculate Euclidean distance between a point and a centroid
|
67 |
def classify_based_on_distance(train_data, train_labels, test_data):
|
68 |
-
|
69 |
-
|
|
|
70 |
|
71 |
predictions = []
|
72 |
for test_point in test_data:
|
73 |
-
|
74 |
-
|
|
|
75 |
predictions.append(0 if dist_0 < dist_1 else 1)
|
76 |
|
77 |
-
return torch.tensor(predictions)
|
78 |
|
79 |
# Function to generate confusion matrix plot
|
80 |
def plot_confusion_matrix(y_true, y_pred, title):
|
@@ -91,77 +132,121 @@ def plot_confusion_matrix(y_true, y_pred, title):
|
|
91 |
plt.savefig(f"{title}.png")
|
92 |
return Image.open(f"{title}.png")
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
labels = np.asarray(f['labels']) # Use np.asarray to avoid DeprecationWarning
|
104 |
-
print(f"Loaded dataset with {channels.shape[0]} samples.")
|
105 |
|
|
|
|
|
106 |
|
107 |
-
|
|
|
|
|
|
|
|
|
108 |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
109 |
model_repo_dir = "./LWM"
|
110 |
|
|
|
111 |
if not os.path.exists(model_repo_dir):
|
112 |
print(f"Cloning model repository from {model_repo_url}...")
|
113 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
114 |
|
115 |
-
#
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
|
|
|
|
|
122 |
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
|
|
|
|
|
123 |
inference = load_module_from_path("inference", inference_path)
|
124 |
|
|
|
125 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
126 |
-
print(f"Loading LWM model on {device}...")
|
127 |
model = lwm_model.LWM.from_pretrained(device=device).to(torch.float32)
|
128 |
|
129 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
|
|
|
|
|
|
|
131 |
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
|
|
|
132 |
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
|
|
|
133 |
|
134 |
print(f"Output Embeddings Shape: {output_emb.shape}")
|
135 |
print(f"Output Raw Shape: {output_raw.shape}")
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
finally:
|
143 |
-
sys.stdout = sys.__stdout__ # Reset print statements
|
144 |
-
|
145 |
-
# Function to handle classification after inference (using Gradio state)
|
146 |
-
def los_nlos_classification(inference_output, percentage_idx):
|
147 |
-
output_emb, output_raw, labels = inference_output
|
148 |
-
if output_emb is not None and output_raw is not None:
|
149 |
-
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(
|
150 |
-
output_emb.view(len(output_emb), -1),
|
151 |
-
output_raw.view(len(output_raw), -1),
|
152 |
-
labels,
|
153 |
-
percentage_idx
|
154 |
-
)
|
155 |
|
|
|
|
|
|
|
|
|
156 |
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
|
157 |
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
|
158 |
-
|
|
|
159 |
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
|
160 |
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
|
161 |
|
162 |
-
return raw_cm_image, emb_cm_image,
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
# Define the Gradio interface
|
167 |
with gr.Blocks(css="""
|
@@ -177,37 +262,61 @@ with gr.Blocks(css="""
|
|
177 |
text-align: center;
|
178 |
}
|
179 |
""") as demo:
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
# Tabs for Beam Prediction and LoS/NLoS Classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
with gr.Tab("LoS/NLoS Classification Task"):
|
183 |
gr.Markdown("### LoS/NLoS Classification Task")
|
184 |
-
|
185 |
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])
|
186 |
|
187 |
with gr.Row():
|
188 |
-
|
189 |
-
|
190 |
-
value=
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
194 |
|
195 |
with gr.Row():
|
196 |
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
|
197 |
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
|
198 |
output_textbox = gr.Textbox(label="Console Output", lines=10)
|
199 |
|
200 |
-
|
201 |
-
|
202 |
-
file_input.upload(run_inference, inputs=file_input, outputs=inference_output)
|
203 |
-
|
204 |
-
# Handle dropdown change for classification
|
205 |
-
percentage_dropdown_los.change(
|
206 |
-
fn=los_nlos_classification,
|
207 |
-
inputs=[inference_output, percentage_dropdown_los],
|
208 |
-
outputs=[raw_img_los, embeddings_img_los, output_textbox]
|
209 |
-
)
|
210 |
|
211 |
# Launch the app
|
212 |
if __name__ == "__main__":
|
213 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
31 |
def get_output(self):
|
32 |
return ''.join(self.output)
|
33 |
|
34 |
+
# Function to load and display predefined images based on user selection
|
35 |
+
def display_predefined_images(percentage_idx):
|
36 |
+
percentage = percentage_values[percentage_idx]
|
37 |
+
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
|
38 |
+
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
|
39 |
+
|
40 |
+
# Check if the images exist
|
41 |
+
if os.path.exists(raw_image_path):
|
42 |
+
raw_image = Image.open(raw_image_path)
|
43 |
+
else:
|
44 |
+
raw_image = create_random_image() # Use a fallback random image
|
45 |
+
|
46 |
+
if os.path.exists(embeddings_image_path):
|
47 |
+
embeddings_image = Image.open(embeddings_image_path)
|
48 |
+
else:
|
49 |
+
embeddings_image = create_random_image() # Use a fallback random image
|
50 |
+
|
51 |
+
return raw_image, embeddings_image
|
52 |
+
|
53 |
+
# Updated los_nlos_classification to handle missing outputs properly
|
54 |
+
def los_nlos_classification(file, percentage_idx):
|
55 |
+
if file is not None:
|
56 |
+
raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage_idx)
|
57 |
+
return raw_cm_image, emb_cm_image, console_output
|
58 |
+
else:
|
59 |
+
raw_image, embeddings_image = display_predefined_images(percentage_idx)
|
60 |
+
return raw_image, embeddings_image, "No file uploaded. Displaying predefined images."
|
61 |
+
|
62 |
# Function to create random images for LoS/NLoS classification results
|
63 |
def create_random_image(size=(300, 300)):
|
64 |
random_image = np.random.rand(*size, 3) * 255
|
65 |
return Image.fromarray(random_image.astype('uint8'))
|
66 |
|
67 |
+
# Function to load the pre-trained model from your cloned repository
|
68 |
+
def load_custom_model():
|
69 |
+
from lwm_model import LWM # Assuming the model is defined in lwm_model.py
|
70 |
+
model = LWM() # Modify this according to your model initialization
|
71 |
+
model.eval()
|
72 |
+
return model
|
73 |
+
|
74 |
+
import importlib.util
|
75 |
+
|
76 |
+
# Function to dynamically load a Python module from a given file path
|
77 |
+
def load_module_from_path(module_name, file_path):
|
78 |
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
79 |
+
module = importlib.util.module_from_spec(spec)
|
80 |
+
spec.loader.exec_module(module)
|
81 |
+
return module
|
82 |
+
|
83 |
# Function to split dataset into training and test sets based on user selection
|
84 |
+
def split_dataset(channels, labels, percentage_idx):
|
85 |
+
percentage = percentage_values[percentage_idx] / 100
|
86 |
+
num_samples = channels.shape[0]
|
87 |
+
train_size = int(num_samples * percentage)
|
88 |
+
print(f'Number of Training Samples: {train_size}')
|
89 |
|
90 |
+
indices = np.arange(num_samples)
|
91 |
+
np.random.shuffle(indices)
|
92 |
|
93 |
+
train_idx, test_idx = indices[:train_size], indices[train_size:]
|
|
|
|
|
94 |
|
95 |
+
train_data, test_data = channels[train_idx], channels[test_idx]
|
96 |
+
train_labels, test_labels = labels[train_idx], labels[test_idx]
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
return train_data, test_data, train_labels, test_labels
|
|
|
99 |
|
100 |
+
# Function to calculate Euclidean distance between a point and a centroid
|
101 |
+
def euclidean_distance(x, centroid):
|
102 |
+
return np.linalg.norm(x - centroid)
|
103 |
|
104 |
+
import torch
|
105 |
|
|
|
106 |
def classify_based_on_distance(train_data, train_labels, test_data):
|
107 |
+
# Compute the centroids for the two classes
|
108 |
+
centroid_0 = train_data[train_labels == 0].mean(dim=0) # Use torch.mean
|
109 |
+
centroid_1 = train_data[train_labels == 1].mean(dim=0) # Use torch.mean
|
110 |
|
111 |
predictions = []
|
112 |
for test_point in test_data:
|
113 |
+
# Compute Euclidean distance between the test point and each centroid
|
114 |
+
dist_0 = euclidean_distance(test_point, centroid_0)
|
115 |
+
dist_1 = euclidean_distance(test_point, centroid_1)
|
116 |
predictions.append(0 if dist_0 < dist_1 else 1)
|
117 |
|
118 |
+
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
|
119 |
|
120 |
# Function to generate confusion matrix plot
|
121 |
def plot_confusion_matrix(y_true, y_pred, title):
|
|
|
132 |
plt.savefig(f"{title}.png")
|
133 |
return Image.open(f"{title}.png")
|
134 |
|
135 |
+
def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
|
136 |
+
N = output_emb.shape[0] # Get the total number of samples
|
137 |
+
|
138 |
+
# Generate the indices for shuffling and splitting
|
139 |
+
indices = torch.randperm(N) # Randomly shuffle the indices
|
140 |
+
|
141 |
+
# Calculate the split index
|
142 |
+
split_index = int(N * percentage_values[percentage_idx])
|
143 |
+
print(f'Training Size: {split_index}')
|
144 |
+
|
145 |
+
# Split indices into train and test
|
146 |
+
train_indices = indices[:split_index] # First 80% for training
|
147 |
+
test_indices = indices[split_index:] # Remaining 20% for testing
|
148 |
+
|
149 |
+
# Select the same indices from both output_emb and output_raw
|
150 |
+
train_emb = output_emb[train_indices]
|
151 |
+
test_emb = output_emb[test_indices]
|
152 |
+
|
153 |
+
train_raw = output_raw[train_indices]
|
154 |
+
test_raw = output_raw[test_indices]
|
155 |
|
156 |
+
train_labels = labels[train_indices]
|
157 |
+
test_labels = labels[test_indices]
|
158 |
+
|
159 |
+
return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels
|
|
|
|
|
160 |
|
161 |
+
# Store the original working directory when the app starts
|
162 |
+
original_dir = os.getcwd()
|
163 |
|
164 |
+
def process_hdf5_file(uploaded_file, percentage_idx):
|
165 |
+
capture = PrintCapture()
|
166 |
+
sys.stdout = capture # Redirect print statements to capture
|
167 |
+
|
168 |
+
try:
|
169 |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
170 |
model_repo_dir = "./LWM"
|
171 |
|
172 |
+
# Step 1: Clone the repository if not already done
|
173 |
if not os.path.exists(model_repo_dir):
|
174 |
print(f"Cloning model repository from {model_repo_url}...")
|
175 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
176 |
|
177 |
+
# Step 2: Verify the repository was cloned and change the working directory
|
178 |
+
repo_work_dir = os.path.join(original_dir, model_repo_dir)
|
179 |
+
if os.path.exists(repo_work_dir):
|
180 |
+
os.chdir(repo_work_dir) # Change the working directory only once
|
181 |
+
print(f"Changed working directory to {os.getcwd()}")
|
182 |
+
print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content
|
183 |
+
else:
|
184 |
+
print(f"Directory {repo_work_dir} does not exist.")
|
185 |
+
return
|
186 |
+
|
187 |
+
# Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py
|
188 |
+
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
|
189 |
+
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
|
190 |
+
inference_path = os.path.join(os.getcwd(), 'inference.py')
|
191 |
+
|
192 |
+
# Load lwm_model
|
193 |
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
|
194 |
+
|
195 |
+
# Load input_preprocess
|
196 |
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
|
197 |
+
|
198 |
+
# Load inference
|
199 |
inference = load_module_from_path("inference", inference_path)
|
200 |
|
201 |
+
# Step 4: Load the model from lwm_model module
|
202 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
203 |
+
print(f"Loading the LWM model on {device}...")
|
204 |
model = lwm_model.LWM.from_pretrained(device=device).to(torch.float32)
|
205 |
|
206 |
+
# Step 5: Load the HDF5 file and extract the channels and labels
|
207 |
+
with h5py.File(uploaded_file.name, 'r') as f:
|
208 |
+
channels = np.array(f['channels']) # Assuming 'channels' dataset in the HDF5 file
|
209 |
+
labels = np.array(f['labels']) # Assuming 'labels' dataset in the HDF5 file
|
210 |
+
print(f"Loaded dataset with {channels.shape[0]} samples.")
|
211 |
+
|
212 |
+
# Step 7: Tokenize the data using the tokenizer from input_preprocess
|
213 |
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
|
214 |
+
print(preprocessed_chs[0][0][1])
|
215 |
+
|
216 |
+
# Step 7: Perform inference using the functions from inference.py
|
217 |
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
|
218 |
+
#print(f'output_emb:{output_emb[10][0]}')
|
219 |
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
|
220 |
+
#print(f'output_raw:{output_raw[10][0]}')
|
221 |
|
222 |
print(f"Output Embeddings Shape: {output_emb.shape}")
|
223 |
print(f"Output Raw Shape: {output_raw.shape}")
|
224 |
|
225 |
+
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1),
|
226 |
+
output_raw.view(len(output_raw),-1),
|
227 |
+
labels,
|
228 |
+
percentage_idx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
|
230 |
+
# Step 8: Perform classification using the Euclidean distance for both raw and embeddings
|
231 |
+
print(f'train_data_emb: {train_data_emb.shape}')
|
232 |
+
print(f'train_labels: {train_labels.shape}')
|
233 |
+
print(f'test_data_emb: {test_data_emb.shape}')
|
234 |
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
|
235 |
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
|
236 |
+
print(f'pred_emb: {pred_emb}')
|
237 |
+
# Step 9: Generate confusion matrices for both raw and embeddings
|
238 |
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
|
239 |
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
|
240 |
|
241 |
+
return raw_cm_image, emb_cm_image, capture.get_output()
|
242 |
+
|
243 |
+
except Exception as e:
|
244 |
+
return str(e), str(e), capture.get_output()
|
245 |
+
|
246 |
+
finally:
|
247 |
+
# Always return to the original working directory after processing
|
248 |
+
os.chdir(original_dir)
|
249 |
+
sys.stdout = sys.__stdout__ # Reset print statements
|
250 |
|
251 |
# Define the Gradio interface
|
252 |
with gr.Blocks(css="""
|
|
|
262 |
text-align: center;
|
263 |
}
|
264 |
""") as demo:
|
265 |
+
|
266 |
+
# Contact Section
|
267 |
+
gr.Markdown("""
|
268 |
+
<div style="text-align: center;">
|
269 |
+
<a target="_blank" href="https://www.wi-lab.net">
|
270 |
+
<img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;">
|
271 |
+
</a>
|
272 |
+
<a target="_blank" href="mailto:alikhani@asu.edu" style="margin-left: 10px;">
|
273 |
+
<img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail" alt="Email">
|
274 |
+
</a>
|
275 |
+
</div>
|
276 |
+
""")
|
277 |
+
|
278 |
# Tabs for Beam Prediction and LoS/NLoS Classification
|
279 |
+
with gr.Tab("Beam Prediction Task"):
|
280 |
+
gr.Markdown("### Beam Prediction Task")
|
281 |
+
|
282 |
+
with gr.Row():
|
283 |
+
with gr.Column(elem_id="slider-container"):
|
284 |
+
gr.Markdown("Percentage of Data for Training")
|
285 |
+
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
286 |
+
|
287 |
+
with gr.Row():
|
288 |
+
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
|
289 |
+
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
|
290 |
+
|
291 |
+
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
|
292 |
+
|
293 |
with gr.Tab("LoS/NLoS Classification Task"):
|
294 |
gr.Markdown("### LoS/NLoS Classification Task")
|
295 |
+
|
296 |
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])
|
297 |
|
298 |
with gr.Row():
|
299 |
+
with gr.Column(elem_id="slider-container"):
|
300 |
+
gr.Markdown("Percentage of Data for Training")
|
301 |
+
#percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
|
302 |
+
percentage_dropdown_los = gr.Dropdown(choices=[str(v) for v in percentage_values*10],
|
303 |
+
value=10,
|
304 |
+
label="Percentage of Data for Training",
|
305 |
+
interactive=True)
|
306 |
|
307 |
with gr.Row():
|
308 |
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
|
309 |
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
|
310 |
output_textbox = gr.Textbox(label="Console Output", lines=10)
|
311 |
|
312 |
+
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_dropdown_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
|
313 |
+
percentage_dropdown_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_dropdown_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
314 |
|
315 |
# Launch the app
|
316 |
if __name__ == "__main__":
|
317 |
demo.launch()
|
318 |
+
|
319 |
+
|
320 |
+
don't start over everything when the user changes the dropdown value. start after the inference part:
|
321 |
+
print(f"Output Embeddings Shape: {output_emb.shape}")
|
322 |
+
print(f"Output Raw Shape: {output_raw.shape}")
|