Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -247,13 +247,21 @@ def display_predefined_images(percentage_idx):
|
|
247 |
return raw_image, embeddings_image
|
248 |
|
249 |
# Updated los_nlos_classification to handle missing outputs properly
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
def los_nlos_classification(file, percentage_idx):
|
251 |
if file is not None:
|
252 |
raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage_idx)
|
253 |
-
return raw_cm_image, emb_cm_image, console_output
|
254 |
else:
|
255 |
raw_image, embeddings_image = display_predefined_images(percentage_idx)
|
256 |
-
return raw_image, embeddings_image, "
|
257 |
|
258 |
# Function to create random images for LoS/NLoS classification results
|
259 |
def create_random_image(size=(300, 300)):
|
@@ -488,7 +496,7 @@ with gr.Blocks(css="""
|
|
488 |
gr.Markdown("### LoS/NLoS Classification Task")
|
489 |
|
490 |
# Radio button for user choice: predefined data or upload dataset
|
491 |
-
choice_radio = gr.Radio(choices=["Use
|
492 |
|
493 |
# Dropdown for selecting percentage for predefined data
|
494 |
percentage_dropdown_los = gr.Dropdown(choices=list(range(20)), value=0, label="Percentage of Data for Training")
|
|
|
247 |
return raw_image, embeddings_image
|
248 |
|
249 |
# Updated los_nlos_classification to handle missing outputs properly
|
250 |
+
#def los_nlos_classification(file, percentage_idx):
|
251 |
+
# if file is not None:
|
252 |
+
# raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage_idx)
|
253 |
+
# return raw_cm_image, emb_cm_image, console_output
|
254 |
+
# else:
|
255 |
+
# raw_image, embeddings_image = display_predefined_images(percentage_idx)
|
256 |
+
# return raw_image, embeddings_image, "No file uploaded. Displaying predefined images."
|
257 |
+
|
258 |
def los_nlos_classification(file, percentage_idx):
|
259 |
if file is not None:
|
260 |
raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage_idx)
|
261 |
+
return raw_cm_image, emb_cm_image, console_output # Returning all three: two images and console output
|
262 |
else:
|
263 |
raw_image, embeddings_image = display_predefined_images(percentage_idx)
|
264 |
+
return raw_image, embeddings_image, "" # Return an empty string for console output when no file is uploaded
|
265 |
|
266 |
# Function to create random images for LoS/NLoS classification results
|
267 |
def create_random_image(size=(300, 300)):
|
|
|
496 |
gr.Markdown("### LoS/NLoS Classification Task")
|
497 |
|
498 |
# Radio button for user choice: predefined data or upload dataset
|
499 |
+
choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Predefined Data")
|
500 |
|
501 |
# Dropdown for selecting percentage for predefined data
|
502 |
percentage_dropdown_los = gr.Dropdown(choices=list(range(20)), value=0, label="Percentage of Data for Training")
|