Sadjad Alikhani commited on
Commit
dc661de
·
verified ·
1 Parent(s): ebca844

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -135,8 +135,8 @@ def plot_confusion_matrix_from_csv(csv_file_path, title, save_path):
135
  data = pd.read_csv(csv_file_path)
136
 
137
  # Extract ground truth and predictions
138
- y_true = data['ground-truth']
139
- y_pred = data['predicted']
140
 
141
  # Compute confusion matrix
142
  cm = confusion_matrix(y_true, y_pred)
@@ -229,7 +229,7 @@ class PrintCapture(io.StringIO):
229
 
230
  # Function to load and display predefined images based on user selection
231
  def display_predefined_images(percentage_idx):
232
- percentage = percentage_values[percentage_idx]
233
  raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
234
  embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
235
 
@@ -278,7 +278,7 @@ def load_module_from_path(module_name, file_path):
278
 
279
  # Function to split dataset into training and test sets based on user selection
280
  def split_dataset(channels, labels, percentage_idx):
281
- percentage = percentage_values[percentage_idx] / 100
282
  num_samples = channels.shape[0]
283
  train_size = int(num_samples * percentage)
284
  print(f'Number of Training Samples: {train_size}')
@@ -347,7 +347,7 @@ def identical_train_test_split(output_emb, output_raw, labels, percentage_idx):
347
  indices = torch.randperm(N) # Randomly shuffle the indices
348
 
349
  # Calculate the split index
350
- split_index = int(N * percentage_values[percentage_idx]/100)
351
  print(f'Training Size: {split_index}')
352
 
353
  # Split indices into train and test
@@ -429,7 +429,7 @@ def process_hdf5_file(uploaded_file, percentage_idx):
429
  print(f"Output Raw Shape: {output_raw.shape}")
430
 
431
  print(f'percentage_idx: {percentage_idx}')
432
- print(f'percentage_value: {percentage_values[percentage_idx]}')
433
  train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1),
434
  output_raw.view(len(output_raw),-1),
435
  labels,
 
135
  data = pd.read_csv(csv_file_path)
136
 
137
  # Extract ground truth and predictions
138
+ y_true = data['Target']
139
+ y_pred = data['Top-1 Prediction']
140
 
141
  # Compute confusion matrix
142
  cm = confusion_matrix(y_true, y_pred)
 
229
 
230
  # Function to load and display predefined images based on user selection
231
  def display_predefined_images(percentage_idx):
232
+ percentage = percentage_values_los[percentage_idx]
233
  raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
234
  embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
235
 
 
278
 
279
  # Function to split dataset into training and test sets based on user selection
280
  def split_dataset(channels, labels, percentage_idx):
281
+ percentage = percentage_values_los[percentage_idx] / 100
282
  num_samples = channels.shape[0]
283
  train_size = int(num_samples * percentage)
284
  print(f'Number of Training Samples: {train_size}')
 
347
  indices = torch.randperm(N) # Randomly shuffle the indices
348
 
349
  # Calculate the split index
350
+ split_index = int(N * percentage_values_los[percentage_idx]/100)
351
  print(f'Training Size: {split_index}')
352
 
353
  # Split indices into train and test
 
429
  print(f"Output Raw Shape: {output_raw.shape}")
430
 
431
  print(f'percentage_idx: {percentage_idx}')
432
+ print(f'percentage_value: {percentage_values_los[percentage_idx]}')
433
  train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1),
434
  output_raw.view(len(output_raw),-1),
435
  labels,