Sadjad Alikhani commited on
Commit
cacf045
·
verified ·
1 Parent(s): 03e1944

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -44
app.py CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
2
  import os
3
  from PIL import Image
4
  import numpy as np
 
5
 
6
  # Paths to the predefined images folder
7
  RAW_PATH = os.path.join("images", "raw")
@@ -30,14 +31,7 @@ def display_predefined_images(percentage_idx, complexity_idx):
30
  return raw_image, embeddings_image
31
 
32
  import torch
33
- import numpy as np
34
- import importlib.util
35
-
36
- import torch
37
- import numpy as np
38
- import importlib.util
39
  import subprocess
40
- import os
41
 
42
  # Function to load the pre-trained model from your cloned repository
43
  def load_custom_model():
@@ -47,8 +41,8 @@ def load_custom_model():
47
  model.eval() # Set the model to evaluation mode
48
  return model
49
 
50
- # Function to process the uploaded .py file and perform inference using the custom model
51
- def process_python_file(uploaded_file, percentage_idx, complexity_idx):
52
  try:
53
  # Clone the repository if not already done (for model and tokenizer)
54
  model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
@@ -67,7 +61,6 @@ def process_python_file(uploaded_file, percentage_idx, complexity_idx):
67
 
68
  # Step 1: Load the custom model
69
  from lwm_model import LWM
70
- import torch
71
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
72
  print(f"Loading the LWM model on {device}...")
73
  model = LWM.from_pretrained(device=device)
@@ -75,17 +68,7 @@ def process_python_file(uploaded_file, percentage_idx, complexity_idx):
75
  # Step 2: Import the tokenizer
76
  from input_preprocess import tokenizer
77
 
78
- ## Step 3: Load the uploaded .py file that contains the wireless channel matrix
79
- ## Import the Python file dynamically
80
- #spec = importlib.util.spec_from_file_location("uploaded_module", uploaded_file.name)
81
- #uploaded_module = importlib.util.module_from_spec(spec)
82
- #spec.loader.exec_module(uploaded_module)
83
-
84
- ## Assuming the uploaded file defines a variable called 'dataset'
85
- #manual_data = uploaded_module.dataset # This should be defined in the uploaded file
86
-
87
- import pickle
88
- # Load the .p file containing the wireless channel matrix
89
  with open(uploaded_file.name, 'rb') as f:
90
  manual_data = pickle.load(f)
91
 
@@ -93,28 +76,11 @@ def process_python_file(uploaded_file, percentage_idx, complexity_idx):
93
  preprocessed_chs = tokenizer(manual_data=manual_data)
94
 
95
  # Step 5: Perform inference on the channel matrix using the model
96
- #with torch.no_grad():
97
- # input_tensor = torch.tensor(preprocessed_data).unsqueeze(0) # Add batch dimension
98
- # output = model(input_tensor) # Perform inference
99
  from inference import lwm_inference, create_raw_dataset
100
  output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
101
  output_raw = create_raw_dataset(preprocessed_chs, device)
102
  print(output_emb.shape)
103
  print(output_raw.shape)
104
- # Step 6: Generate new images based on the inference results
105
- #generated_raw_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result
106
- #generated_embeddings_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result
107
-
108
- # Save the generated images
109
- #generated_raw_image_path = os.path.join(GENERATED_PATH, f"generated_raw_{percentage_idx}_{complexity_idx}.png")
110
- #generated_embeddings_image_path = os.path.join(GENERATED_PATH, f"generated_embeddings_{percentage_idx}_{complexity_idx}.png")
111
-
112
- #Image.fromarray(generated_raw_img.astype(np.uint8)).save(generated_raw_image_path)
113
- #Image.fromarray(generated_embeddings_img.astype(np.uint8)).save(generated_embeddings_image_path)
114
-
115
- # Load the generated images
116
- #raw_image = Image.open(generated_raw_image_path)
117
- #embeddings_image = Image.open(generated_embeddings_image_path)
118
 
119
  return output_emb, output_raw
120
 
@@ -124,8 +90,8 @@ def process_python_file(uploaded_file, percentage_idx, complexity_idx):
124
  # Function to handle logic based on whether a file is uploaded or not
125
  def los_nlos_classification(file, percentage_idx, complexity_idx):
126
  if file is not None:
127
- # Process the uploaded file and generate new images
128
- return process_python_file(file, percentage_idx, complexity_idx)
129
  else:
130
  # Display predefined images if no file is uploaded
131
  return display_predefined_images(percentage_idx, complexity_idx)
@@ -150,8 +116,8 @@ with gr.Blocks(css="""
150
  """
151
  ## Contact
152
  <div style="display: flex; align-items: center;">
153
- <a target="_blank" href="mailto:alikhani@asu.edu"><img src="https://img.shields.io/badge/email-info@wirelessmodel.com-blue.svg?logo=gmail " alt="Email"></a>&nbsp;&nbsp;
154
- <a target="_blank" href="https://telegram.me/wirelessmodel"><img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;"></a>&nbsp;&nbsp;
155
  </div>
156
  """
157
  )
@@ -181,8 +147,8 @@ with gr.Blocks(css="""
181
  with gr.Tab("LoS/NLoS Classification Task"):
182
  gr.Markdown("### LoS/NLoS Classification Task")
183
 
184
- # File uploader for uploading .py file
185
- file_input = gr.File(label="Upload .py File", file_types=[".py"])
186
 
187
  # Sliders for percentage and complexity
188
  with gr.Row():
 
2
  import os
3
  from PIL import Image
4
  import numpy as np
5
+ import pickle
6
 
7
  # Paths to the predefined images folder
8
  RAW_PATH = os.path.join("images", "raw")
 
31
  return raw_image, embeddings_image
32
 
33
  import torch
 
 
 
 
 
 
34
  import subprocess
 
35
 
36
  # Function to load the pre-trained model from your cloned repository
37
  def load_custom_model():
 
41
  model.eval() # Set the model to evaluation mode
42
  return model
43
 
44
+ # Function to process the uploaded .p file and perform inference using the custom model
45
+ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
46
  try:
47
  # Clone the repository if not already done (for model and tokenizer)
48
  model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
 
61
 
62
  # Step 1: Load the custom model
63
  from lwm_model import LWM
 
64
  device = 'cuda' if torch.cuda.is_available() else 'cpu'
65
  print(f"Loading the LWM model on {device}...")
66
  model = LWM.from_pretrained(device=device)
 
68
  # Step 2: Import the tokenizer
69
  from input_preprocess import tokenizer
70
 
71
+ # Step 3: Load the uploaded .p file that contains the wireless channel matrix
 
 
 
 
 
 
 
 
 
 
72
  with open(uploaded_file.name, 'rb') as f:
73
  manual_data = pickle.load(f)
74
 
 
76
  preprocessed_chs = tokenizer(manual_data=manual_data)
77
 
78
  # Step 5: Perform inference on the channel matrix using the model
 
 
 
79
  from inference import lwm_inference, create_raw_dataset
80
  output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
81
  output_raw = create_raw_dataset(preprocessed_chs, device)
82
  print(output_emb.shape)
83
  print(output_raw.shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84
 
85
  return output_emb, output_raw
86
 
 
90
  # Function to handle logic based on whether a file is uploaded or not
91
  def los_nlos_classification(file, percentage_idx, complexity_idx):
92
  if file is not None:
93
+ # Process the uploaded .p file and generate new images
94
+ return process_p_file(file, percentage_idx, complexity_idx)
95
  else:
96
  # Display predefined images if no file is uploaded
97
  return display_predefined_images(percentage_idx, complexity_idx)
 
116
  """
117
  ## Contact
118
  <div style="display: flex; align-items: center;">
119
+ <a target="_blank" href="https://www.wi-lab.net"><img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;"></a>&nbsp;&nbsp;
120
+ <a target="_blank" href="mailto:alikhani@asu.edu"><img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail " alt="Email"></a>&nbsp;&nbsp;
121
  </div>
122
  """
123
  )
 
147
  with gr.Tab("LoS/NLoS Classification Task"):
148
  gr.Markdown("### LoS/NLoS Classification Task")
149
 
150
+ # File uploader for uploading .p file
151
+ file_input = gr.File(label="Upload .p File", file_types=[".p"])
152
 
153
  # Sliders for percentage and complexity
154
  with gr.Row():