Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import os
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
|
|
5 |
|
6 |
# Paths to the predefined images folder
|
7 |
RAW_PATH = os.path.join("images", "raw")
|
@@ -30,14 +31,7 @@ def display_predefined_images(percentage_idx, complexity_idx):
|
|
30 |
return raw_image, embeddings_image
|
31 |
|
32 |
import torch
|
33 |
-
import numpy as np
|
34 |
-
import importlib.util
|
35 |
-
|
36 |
-
import torch
|
37 |
-
import numpy as np
|
38 |
-
import importlib.util
|
39 |
import subprocess
|
40 |
-
import os
|
41 |
|
42 |
# Function to load the pre-trained model from your cloned repository
|
43 |
def load_custom_model():
|
@@ -47,8 +41,8 @@ def load_custom_model():
|
|
47 |
model.eval() # Set the model to evaluation mode
|
48 |
return model
|
49 |
|
50 |
-
# Function to process the uploaded .
|
51 |
-
def
|
52 |
try:
|
53 |
# Clone the repository if not already done (for model and tokenizer)
|
54 |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
@@ -67,7 +61,6 @@ def process_python_file(uploaded_file, percentage_idx, complexity_idx):
|
|
67 |
|
68 |
# Step 1: Load the custom model
|
69 |
from lwm_model import LWM
|
70 |
-
import torch
|
71 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
72 |
print(f"Loading the LWM model on {device}...")
|
73 |
model = LWM.from_pretrained(device=device)
|
@@ -75,17 +68,7 @@ def process_python_file(uploaded_file, percentage_idx, complexity_idx):
|
|
75 |
# Step 2: Import the tokenizer
|
76 |
from input_preprocess import tokenizer
|
77 |
|
78 |
-
|
79 |
-
## Import the Python file dynamically
|
80 |
-
#spec = importlib.util.spec_from_file_location("uploaded_module", uploaded_file.name)
|
81 |
-
#uploaded_module = importlib.util.module_from_spec(spec)
|
82 |
-
#spec.loader.exec_module(uploaded_module)
|
83 |
-
|
84 |
-
## Assuming the uploaded file defines a variable called 'dataset'
|
85 |
-
#manual_data = uploaded_module.dataset # This should be defined in the uploaded file
|
86 |
-
|
87 |
-
import pickle
|
88 |
-
# Load the .p file containing the wireless channel matrix
|
89 |
with open(uploaded_file.name, 'rb') as f:
|
90 |
manual_data = pickle.load(f)
|
91 |
|
@@ -93,28 +76,11 @@ def process_python_file(uploaded_file, percentage_idx, complexity_idx):
|
|
93 |
preprocessed_chs = tokenizer(manual_data=manual_data)
|
94 |
|
95 |
# Step 5: Perform inference on the channel matrix using the model
|
96 |
-
#with torch.no_grad():
|
97 |
-
# input_tensor = torch.tensor(preprocessed_data).unsqueeze(0) # Add batch dimension
|
98 |
-
# output = model(input_tensor) # Perform inference
|
99 |
from inference import lwm_inference, create_raw_dataset
|
100 |
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
|
101 |
output_raw = create_raw_dataset(preprocessed_chs, device)
|
102 |
print(output_emb.shape)
|
103 |
print(output_raw.shape)
|
104 |
-
# Step 6: Generate new images based on the inference results
|
105 |
-
#generated_raw_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result
|
106 |
-
#generated_embeddings_img = np.random.rand(300, 300, 3) * 255 # Placeholder: Replace with actual inference result
|
107 |
-
|
108 |
-
# Save the generated images
|
109 |
-
#generated_raw_image_path = os.path.join(GENERATED_PATH, f"generated_raw_{percentage_idx}_{complexity_idx}.png")
|
110 |
-
#generated_embeddings_image_path = os.path.join(GENERATED_PATH, f"generated_embeddings_{percentage_idx}_{complexity_idx}.png")
|
111 |
-
|
112 |
-
#Image.fromarray(generated_raw_img.astype(np.uint8)).save(generated_raw_image_path)
|
113 |
-
#Image.fromarray(generated_embeddings_img.astype(np.uint8)).save(generated_embeddings_image_path)
|
114 |
-
|
115 |
-
# Load the generated images
|
116 |
-
#raw_image = Image.open(generated_raw_image_path)
|
117 |
-
#embeddings_image = Image.open(generated_embeddings_image_path)
|
118 |
|
119 |
return output_emb, output_raw
|
120 |
|
@@ -124,8 +90,8 @@ def process_python_file(uploaded_file, percentage_idx, complexity_idx):
|
|
124 |
# Function to handle logic based on whether a file is uploaded or not
|
125 |
def los_nlos_classification(file, percentage_idx, complexity_idx):
|
126 |
if file is not None:
|
127 |
-
# Process the uploaded file and generate new images
|
128 |
-
return
|
129 |
else:
|
130 |
# Display predefined images if no file is uploaded
|
131 |
return display_predefined_images(percentage_idx, complexity_idx)
|
@@ -150,8 +116,8 @@ with gr.Blocks(css="""
|
|
150 |
"""
|
151 |
## Contact
|
152 |
<div style="display: flex; align-items: center;">
|
153 |
-
<a target="_blank" href="
|
154 |
-
<a target="_blank" href="
|
155 |
</div>
|
156 |
"""
|
157 |
)
|
@@ -181,8 +147,8 @@ with gr.Blocks(css="""
|
|
181 |
with gr.Tab("LoS/NLoS Classification Task"):
|
182 |
gr.Markdown("### LoS/NLoS Classification Task")
|
183 |
|
184 |
-
# File uploader for uploading .
|
185 |
-
file_input = gr.File(label="Upload .
|
186 |
|
187 |
# Sliders for percentage and complexity
|
188 |
with gr.Row():
|
|
|
2 |
import os
|
3 |
from PIL import Image
|
4 |
import numpy as np
|
5 |
+
import pickle
|
6 |
|
7 |
# Paths to the predefined images folder
|
8 |
RAW_PATH = os.path.join("images", "raw")
|
|
|
31 |
return raw_image, embeddings_image
|
32 |
|
33 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
import subprocess
|
|
|
35 |
|
36 |
# Function to load the pre-trained model from your cloned repository
|
37 |
def load_custom_model():
|
|
|
41 |
model.eval() # Set the model to evaluation mode
|
42 |
return model
|
43 |
|
44 |
+
# Function to process the uploaded .p file and perform inference using the custom model
|
45 |
+
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
46 |
try:
|
47 |
# Clone the repository if not already done (for model and tokenizer)
|
48 |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
|
|
61 |
|
62 |
# Step 1: Load the custom model
|
63 |
from lwm_model import LWM
|
|
|
64 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
65 |
print(f"Loading the LWM model on {device}...")
|
66 |
model = LWM.from_pretrained(device=device)
|
|
|
68 |
# Step 2: Import the tokenizer
|
69 |
from input_preprocess import tokenizer
|
70 |
|
71 |
+
# Step 3: Load the uploaded .p file that contains the wireless channel matrix
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
with open(uploaded_file.name, 'rb') as f:
|
73 |
manual_data = pickle.load(f)
|
74 |
|
|
|
76 |
preprocessed_chs = tokenizer(manual_data=manual_data)
|
77 |
|
78 |
# Step 5: Perform inference on the channel matrix using the model
|
|
|
|
|
|
|
79 |
from inference import lwm_inference, create_raw_dataset
|
80 |
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
|
81 |
output_raw = create_raw_dataset(preprocessed_chs, device)
|
82 |
print(output_emb.shape)
|
83 |
print(output_raw.shape)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
return output_emb, output_raw
|
86 |
|
|
|
90 |
# Function to handle logic based on whether a file is uploaded or not
|
91 |
def los_nlos_classification(file, percentage_idx, complexity_idx):
|
92 |
if file is not None:
|
93 |
+
# Process the uploaded .p file and generate new images
|
94 |
+
return process_p_file(file, percentage_idx, complexity_idx)
|
95 |
else:
|
96 |
# Display predefined images if no file is uploaded
|
97 |
return display_predefined_images(percentage_idx, complexity_idx)
|
|
|
116 |
"""
|
117 |
## Contact
|
118 |
<div style="display: flex; align-items: center;">
|
119 |
+
<a target="_blank" href="https://www.wi-lab.net"><img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;"></a>
|
120 |
+
<a target="_blank" href="mailto:alikhani@asu.edu"><img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail " alt="Email"></a>
|
121 |
</div>
|
122 |
"""
|
123 |
)
|
|
|
147 |
with gr.Tab("LoS/NLoS Classification Task"):
|
148 |
gr.Markdown("### LoS/NLoS Classification Task")
|
149 |
|
150 |
+
# File uploader for uploading .p file
|
151 |
+
file_input = gr.File(label="Upload .p File", file_types=[".p"])
|
152 |
|
153 |
# Sliders for percentage and complexity
|
154 |
with gr.Row():
|