wi-lab commited on
Commit
3988f3f
Β·
verified Β·
1 Parent(s): 2a27166

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -3
app.py CHANGED
@@ -611,14 +611,16 @@ with gr.Blocks(css="""
611
  <h3 style="color: var(--text-primary);">πŸ” <b>LoS/NLoS Classification Task</b></h3>
612
  <ul style="padding-left: 20px;">
613
  <li><b>🎯 Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight) with very small LWM CLS embeddings.</li>
614
- <li><b>πŸ“‚ Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>h5py</b> format.</li>
615
  <li><b>πŸ’‘ Custom Dataset Requirements:</b>
616
  <ul>
617
- <li>πŸ›’ <b>channels</b> array: Shape (N,32,32)</li>
618
  <li>🏷️ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
619
  </ul>
620
  </li>
621
- <li><b>πŸ”— Tip</b>: Instructions for organizing your dataset are available at the bottom of the page.</li>
 
 
622
  <li><b>πŸ’Ό No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
623
  </ul>
624
  </div>
 
611
  <h3 style="color: var(--text-primary);">πŸ” <b>LoS/NLoS Classification Task</b></h3>
612
  <ul style="padding-left: 20px;">
613
  <li><b>🎯 Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight) with very small LWM CLS embeddings.</li>
614
+ <li><b>πŸ“‚ Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>h5</b> format.</li>
615
  <li><b>πŸ’‘ Custom Dataset Requirements:</b>
616
  <ul>
617
+ <li>πŸŽ› <b>channels</b> array: Shape (N,32,32), rows: 32 antennas at BS, columns: 32 antennas at UEs</li>
618
  <li>🏷️ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
619
  </ul>
620
  </li>
621
+ <li><b>πŸ”— Tip 1</b>: Instructions for organizing your dataset are available at the bottom of the page.</li>
622
+ <li><b>πŸ”— Tip 2</b>: As the computations and inference are performed on HuggingFace CPUs, please use small datasets for faster demo experience (say <500 samples). </li>
623
+ <li><b>πŸ”— Tip 3</b>: Your dataset will be normalized automatically based on outdoor environments. </li>
624
  <li><b>πŸ’Ό No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
625
  </ul>
626
  </div>