Sadjad Alikhani commited on
Commit
a392854
·
verified ·
1 Parent(s): 8030161

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -5
app.py CHANGED
@@ -46,6 +46,22 @@ def create_random_image(size=(300, 300)):
46
  random_image = np.random.rand(*size, 3) * 255
47
  return Image.fromarray(random_image.astype('uint8'))
48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  # Function to process the uploaded .p file and perform inference using the custom model
50
  def process_p_file(uploaded_file, percentage_idx, complexity_idx):
51
  capture = PrintCapture()
@@ -64,15 +80,61 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
64
  if os.path.exists(model_repo_dir):
65
  os.chdir(model_repo_dir)
66
  print(f"Changed working directory to {os.getcwd()}")
 
67
  else:
68
  print(f"Directory {model_repo_dir} does not exist.")
69
  return
70
 
71
- # Simulate processing and generating random images
72
- raw_image = create_random_image()
73
- embeddings_image = create_random_image()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
- return raw_image, embeddings_image, capture.get_output()
76
 
77
  except Exception as e:
78
  return str(e), str(e), capture.get_output()
@@ -85,7 +147,7 @@ def los_nlos_classification(file, percentage_idx, complexity_idx):
85
  if file is not None:
86
  return process_p_file(file, percentage_idx, complexity_idx)
87
  else:
88
- return create_random_image(), create_random_image(), None
89
 
90
  # Define the Gradio interface
91
  with gr.Blocks(css="""
 
46
  random_image = np.random.rand(*size, 3) * 255
47
  return Image.fromarray(random_image.astype('uint8'))
48
 
49
+ # Function to load the pre-trained model from your cloned repository
50
+ def load_custom_model():
51
+ from lwm_model import LWM # Assuming the model is defined in lwm_model.py
52
+ model = LWM() # Modify this according to your model initialization
53
+ model.eval()
54
+ return model
55
+
56
+ import importlib.util
57
+
58
+ # Function to dynamically load a Python module from a given file path
59
+ def load_module_from_path(module_name, file_path):
60
+ spec = importlib.util.spec_from_file_location(module_name, file_path)
61
+ module = importlib.util.module_from_spec(spec)
62
+ spec.loader.exec_module(module)
63
+ return module
64
+
65
  # Function to process the uploaded .p file and perform inference using the custom model
66
  def process_p_file(uploaded_file, percentage_idx, complexity_idx):
67
  capture = PrintCapture()
 
80
  if os.path.exists(model_repo_dir):
81
  os.chdir(model_repo_dir)
82
  print(f"Changed working directory to {os.getcwd()}")
83
+ print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content
84
  else:
85
  print(f"Directory {model_repo_dir} does not exist.")
86
  return
87
 
88
+ # Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py
89
+ lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
90
+ input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
91
+ inference_path = os.path.join(os.getcwd(), 'inference.py')
92
+
93
+ print(lwm_model_path)
94
+ print(input_preprocess_path)
95
+ print(inference_path)
96
+
97
+ # Load lwm_model
98
+ if os.path.exists(lwm_model_path):
99
+ lwm_model = load_module_from_path("lwm_model", lwm_model_path)
100
+ else:
101
+ return f"Error: lwm_model.py not found at {lwm_model_path}"
102
+
103
+ # Load input_preprocess
104
+ if os.path.exists(input_preprocess_path):
105
+ input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
106
+ else:
107
+ return f"Error: input_preprocess.py not found at {input_preprocess_path}"
108
+
109
+ # Load inference
110
+ if os.path.exists(inference_path):
111
+ inference = load_module_from_path("inference", inference_path)
112
+ else:
113
+ return f"Error: inference.py not found at {inference_path}"
114
+
115
+ # Step 4: Load the model from lwm_model module
116
+ device = 'cpu'
117
+ print(f"Loading the LWM model on {device}...")
118
+ model = lwm_model.LWM.from_pretrained(device=device)
119
+
120
+ # Step 5: Tokenize the data using the tokenizer from input_preprocess
121
+ with open(uploaded_file.name, 'rb') as f:
122
+ manual_data = pickle.load(f)
123
+
124
+ preprocessed_chs = input_preprocess.tokenizer(manual_data=manual_data)
125
+
126
+ # Step 6: Perform inference using the functions from inference.py
127
+ output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
128
+ output_raw = inference.create_raw_dataset(preprocessed_chs, device)
129
+
130
+ print(f"Output Embeddings Shape: {output_emb.shape}")
131
+ print(f"Output Raw Shape: {output_raw.shape}")
132
+
133
+ # Step 7: Generate random images as a test
134
+ random_raw_image = create_random_image()
135
+ random_embeddings_image = create_random_image()
136
 
137
+ return random_raw_image, random_embeddings_image, capture.get_output()
138
 
139
  except Exception as e:
140
  return str(e), str(e), capture.get_output()
 
147
  if file is not None:
148
  return process_p_file(file, percentage_idx, complexity_idx)
149
  else:
150
+ return display_predefined_images(percentage_idx, complexity_idx), None
151
 
152
  # Define the Gradio interface
153
  with gr.Blocks(css="""