Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,13 +6,11 @@ import pickle
|
|
6 |
import io
|
7 |
import sys
|
8 |
import torch
|
9 |
-
import torch
|
10 |
import subprocess
|
11 |
|
12 |
# Paths to the predefined images folder
|
13 |
RAW_PATH = os.path.join("images", "raw")
|
14 |
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
|
15 |
-
GENERATED_PATH = os.path.join("images", "generated")
|
16 |
|
17 |
# Specific values for percentage and complexity
|
18 |
percentage_values = [10, 30, 50, 70, 100]
|
@@ -32,68 +30,21 @@ class PrintCapture(io.StringIO):
|
|
32 |
return ''.join(self.output)
|
33 |
|
34 |
# Function to load and display predefined images based on user selection
|
35 |
-
#def display_predefined_images(percentage_idx, complexity_idx):
|
36 |
-
# percentage = percentage_values[percentage_idx]
|
37 |
-
# complexity = complexity_values[complexity_idx]
|
38 |
-
# raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
|
39 |
-
# embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
|
40 |
-
|
41 |
-
# raw_image = Image.open(raw_image_path)
|
42 |
-
# embeddings_image = Image.open(embeddings_image_path)
|
43 |
-
|
44 |
-
# return raw_image, embeddings_image
|
45 |
-
|
46 |
def display_predefined_images(percentage_idx, complexity_idx):
|
47 |
-
# Map the slider index to the actual value
|
48 |
percentage = percentage_values[percentage_idx]
|
49 |
complexity = complexity_values[complexity_idx]
|
50 |
-
|
51 |
-
# Generate the paths to the images
|
52 |
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
|
53 |
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
|
54 |
|
55 |
-
# Check if the images exist
|
56 |
-
if not os.path.exists(raw_image_path):
|
57 |
-
return None, None # Or handle the error appropriately
|
58 |
-
if not os.path.exists(embeddings_image_path):
|
59 |
-
return None, None # Or handle the error appropriately
|
60 |
-
|
61 |
-
# Load images using PIL
|
62 |
raw_image = Image.open(raw_image_path)
|
63 |
embeddings_image = Image.open(embeddings_image_path)
|
64 |
|
65 |
-
# Return the loaded images
|
66 |
return raw_image, embeddings_image
|
67 |
-
|
68 |
-
|
69 |
-
# Function to load the pre-trained model from your cloned repository
|
70 |
-
def load_custom_model():
|
71 |
-
from lwm_model import LWM # Assuming the model is defined in lwm_model.py
|
72 |
-
model = LWM() # Modify this according to your model initialization
|
73 |
-
model.eval()
|
74 |
-
return model
|
75 |
-
|
76 |
-
import importlib.util
|
77 |
-
|
78 |
-
# Function to dynamically load a Python module from a given file path
|
79 |
-
def load_module_from_path(module_name, file_path):
|
80 |
-
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
81 |
-
module = importlib.util.module_from_spec(spec)
|
82 |
-
spec.loader.exec_module(module)
|
83 |
-
return module
|
84 |
-
|
85 |
-
import sys
|
86 |
-
import os
|
87 |
-
import subprocess
|
88 |
-
import pickle
|
89 |
-
import importlib.util
|
90 |
|
91 |
-
# Function to
|
92 |
-
def
|
93 |
-
|
94 |
-
|
95 |
-
spec.loader.exec_module(module)
|
96 |
-
return module
|
97 |
|
98 |
# Function to process the uploaded .p file and perform inference using the custom model
|
99 |
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
@@ -113,57 +64,15 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
113 |
if os.path.exists(model_repo_dir):
|
114 |
os.chdir(model_repo_dir)
|
115 |
print(f"Changed working directory to {os.getcwd()}")
|
116 |
-
print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content
|
117 |
else:
|
118 |
print(f"Directory {model_repo_dir} does not exist.")
|
119 |
return
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
124 |
-
inference_path = os.path.join(os.getcwd(), 'inference.py')
|
125 |
-
|
126 |
-
print(lwm_model_path)
|
127 |
-
print(input_preprocess_path)
|
128 |
-
print(inference_path)
|
129 |
-
|
130 |
-
# Load lwm_model
|
131 |
-
if os.path.exists(lwm_model_path):
|
132 |
-
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
|
133 |
-
else:
|
134 |
-
return f"Error: lwm_model.py not found at {lwm_model_path}"
|
135 |
-
|
136 |
-
# Load input_preprocess
|
137 |
-
if os.path.exists(input_preprocess_path):
|
138 |
-
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
|
139 |
-
else:
|
140 |
-
return f"Error: input_preprocess.py not found at {input_preprocess_path}"
|
141 |
-
|
142 |
-
# Load inference
|
143 |
-
if os.path.exists(inference_path):
|
144 |
-
inference = load_module_from_path("inference", inference_path)
|
145 |
-
else:
|
146 |
-
return f"Error: inference.py not found at {inference_path}"
|
147 |
-
|
148 |
-
# Step 4: Load the model from lwm_model module
|
149 |
-
device = 'cpu'
|
150 |
-
print(f"Loading the LWM model on {device}...")
|
151 |
-
model = lwm_model.LWM.from_pretrained(device=device)
|
152 |
-
|
153 |
-
# Step 5: Tokenize the data using the tokenizer from input_preprocess
|
154 |
-
with open(uploaded_file.name, 'rb') as f:
|
155 |
-
manual_data = pickle.load(f)
|
156 |
-
|
157 |
-
preprocessed_chs = input_preprocess.tokenizer(manual_data=manual_data)
|
158 |
|
159 |
-
|
160 |
-
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
|
161 |
-
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
|
162 |
-
|
163 |
-
print(f"Output Embeddings Shape: {output_emb.shape}")
|
164 |
-
print(f"Output Raw Shape: {output_raw.shape}")
|
165 |
-
|
166 |
-
return output_emb, output_raw, capture.get_output()
|
167 |
|
168 |
except Exception as e:
|
169 |
return str(e), str(e), capture.get_output()
|
@@ -171,13 +80,12 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
171 |
finally:
|
172 |
sys.stdout = sys.__stdout__ # Reset print statements
|
173 |
|
174 |
-
|
175 |
# Function to handle logic based on whether a file is uploaded or not
|
176 |
def los_nlos_classification(file, percentage_idx, complexity_idx):
|
177 |
if file is not None:
|
178 |
return process_p_file(file, percentage_idx, complexity_idx)
|
179 |
else:
|
180 |
-
return
|
181 |
|
182 |
# Define the Gradio interface
|
183 |
with gr.Blocks(css="""
|
|
|
6 |
import io
|
7 |
import sys
|
8 |
import torch
|
|
|
9 |
import subprocess
|
10 |
|
11 |
# Paths to the predefined images folder
|
12 |
RAW_PATH = os.path.join("images", "raw")
|
13 |
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
|
|
|
14 |
|
15 |
# Specific values for percentage and complexity
|
16 |
percentage_values = [10, 30, 50, 70, 100]
|
|
|
30 |
return ''.join(self.output)
|
31 |
|
32 |
# Function to load and display predefined images based on user selection
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
def display_predefined_images(percentage_idx, complexity_idx):
|
|
|
34 |
percentage = percentage_values[percentage_idx]
|
35 |
complexity = complexity_values[complexity_idx]
|
|
|
|
|
36 |
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
|
37 |
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
raw_image = Image.open(raw_image_path)
|
40 |
embeddings_image = Image.open(embeddings_image_path)
|
41 |
|
|
|
42 |
return raw_image, embeddings_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Function to create random images for LoS/NLoS classification results
|
45 |
+
def create_random_image(size=(300, 300)):
|
46 |
+
random_image = np.random.rand(*size, 3) * 255
|
47 |
+
return Image.fromarray(random_image.astype('uint8'))
|
|
|
|
|
48 |
|
49 |
# Function to process the uploaded .p file and perform inference using the custom model
|
50 |
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
|
64 |
if os.path.exists(model_repo_dir):
|
65 |
os.chdir(model_repo_dir)
|
66 |
print(f"Changed working directory to {os.getcwd()}")
|
|
|
67 |
else:
|
68 |
print(f"Directory {model_repo_dir} does not exist.")
|
69 |
return
|
70 |
|
71 |
+
# Simulate processing and generating random images
|
72 |
+
raw_image = create_random_image()
|
73 |
+
embeddings_image = create_random_image()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
return raw_image, embeddings_image, capture.get_output()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
except Exception as e:
|
78 |
return str(e), str(e), capture.get_output()
|
|
|
80 |
finally:
|
81 |
sys.stdout = sys.__stdout__ # Reset print statements
|
82 |
|
|
|
83 |
# Function to handle logic based on whether a file is uploaded or not
|
84 |
def los_nlos_classification(file, percentage_idx, complexity_idx):
|
85 |
if file is not None:
|
86 |
return process_p_file(file, percentage_idx, complexity_idx)
|
87 |
else:
|
88 |
+
return create_random_image(), create_random_image(), None
|
89 |
|
90 |
# Define the Gradio interface
|
91 |
with gr.Blocks(css="""
|