wi-lab commited on
Commit
ba6a63c
·
verified ·
1 Parent(s): e02f4a3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -9
app.py CHANGED
@@ -617,7 +617,7 @@ with gr.Blocks(css="""
617
  <li>🏷️ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
618
  </ul>
619
  </li>
620
- <li><b>🔗 Tip</b>: You can find guidance on how to structure your dataset in the provided model repository.</li>
621
  <li><b>💼 No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
622
  </ul>
623
  </div>
@@ -665,17 +665,19 @@ with gr.Blocks(css="""
665
  gr.Markdown("""
666
  <div class="explanation-box">
667
  To create a custom dataset, you'll need to structure your data with 32x32 channel matrices, where the rows correspond to antennas at the base station and the columns represent subcarriers. Here’s how to organize and store the channels and labels in an H5 file format for the demo:
668
- ```python
669
- # How to pack channels and labels in a h5 file format as a custom dataset for the demo:
670
- import h5py
671
- with h5py.File('dataset.h5', 'w') as hdf:
672
- hdf.create_dataset('channels', data=channels)
673
- hdf.create_dataset('labels', data=labels)
674
- print("Dataset saved!")
675
- ```
676
  </div>
 
 
 
 
 
 
 
 
 
677
  """)
678
 
 
679
 
680
 
681
  # Launch the app
 
617
  <li>🏷️ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
618
  </ul>
619
  </li>
620
+ <li><b>🔗 Tip</b>: Instructions for organizing your dataset are available at the bottom of the page.</li>
621
  <li><b>💼 No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
622
  </ul>
623
  </div>
 
665
  gr.Markdown("""
666
  <div class="explanation-box">
667
  To create a custom dataset, you'll need to structure your data with 32x32 channel matrices, where the rows correspond to antennas at the base station and the columns represent subcarriers. Here’s how to organize and store the channels and labels in an H5 file format for the demo:
 
 
 
 
 
 
 
 
668
  </div>
669
+
670
+ ```python
671
+ # How to pack channels and labels in a h5 file format as a custom dataset for the demo:
672
+ import h5py
673
+ with h5py.File('dataset.h5', 'w') as hdf:
674
+ hdf.create_dataset('channels', data=channels)
675
+ hdf.create_dataset('labels', data=labels)
676
+ print("Dataset saved!")
677
+ ```
678
  """)
679
 
680
+
681
 
682
 
683
  # Launch the app