Sadjad Alikhani commited on
Commit
8f8b054
·
verified ·
1 Parent(s): 0176215

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +118 -0
app.py CHANGED
@@ -1,3 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
  from transformers import AutoModel # Assuming you use a transformer-like model in your LWM repo
3
  import numpy as np
@@ -50,3 +81,90 @@ def process_python_file(uploaded_file, percentage_idx, complexity_idx):
50
 
51
  except Exception as e:
52
  return str(e), str(e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ from PIL import Image
4
+ import numpy as np
5
+
6
+ # Paths to the predefined images folder
7
+ RAW_PATH = os.path.join("images", "raw")
8
+ EMBEDDINGS_PATH = os.path.join("images", "embeddings")
9
+ GENERATED_PATH = os.path.join("images", "generated")
10
+
11
+ # Specific values for percentage and complexity
12
+ percentage_values = [10, 30, 50, 70, 100]
13
+ complexity_values = [16, 32]
14
+
15
+ # Function to load and display predefined images based on user selection
16
+ def display_predefined_images(percentage_idx, complexity_idx):
17
+ # Map the slider index to the actual value
18
+ percentage = percentage_values[percentage_idx]
19
+ complexity = complexity_values[complexity_idx]
20
+
21
+ # Generate the paths to the images
22
+ raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
23
+ embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_{complexity}.png")
24
+
25
+ # Load images using PIL
26
+ raw_image = Image.open(raw_image_path)
27
+ embeddings_image = Image.open(embeddings_image_path)
28
+
29
+ # Return the loaded images
30
+ return raw_image, embeddings_image
31
+
32
  import torch
33
  from transformers import AutoModel # Assuming you use a transformer-like model in your LWM repo
34
  import numpy as np
 
81
 
82
  except Exception as e:
83
  return str(e), str(e)
84
+
85
+
86
+ # Function to handle logic based on whether a file is uploaded or not
87
+ def los_nlos_classification(file, percentage_idx, complexity_idx):
88
+ if file is not None:
89
+ # Process the uploaded file and generate new images
90
+ return process_python_file(file, percentage_idx, complexity_idx)
91
+ else:
92
+ # Display predefined images if no file is uploaded
93
+ return display_predefined_images(percentage_idx, complexity_idx)
94
+
95
+ # Define the Gradio interface
96
+ with gr.Blocks(css="""
97
+ .vertical-slider input[type=range] {
98
+ writing-mode: bt-lr; /* IE */
99
+ -webkit-appearance: slider-vertical; /* WebKit */
100
+ width: 8px;
101
+ height: 200px;
102
+ }
103
+ .slider-container {
104
+ display: inline-block;
105
+ margin-right: 50px;
106
+ text-align: center;
107
+ }
108
+ """) as demo:
109
+
110
+ # Contact Section
111
+ gr.Markdown(
112
+ """
113
+ ## Contact
114
+ <div style="display: flex; align-items: center;">
115
+ <a target="_blank" href="mailto:info@wirelessmodel.com"><img src="https://img.shields.io/badge/email-info@wirelessmodel.com-blue.svg?logo=gmail " alt="Email"></a>&nbsp;&nbsp;
116
+ <a target="_blank" href="https://telegram.me/wirelessmodel"><img src="https://img.shields.io/badge/telegram-@wirelessmodel-blue.svg?logo=telegram " alt="Telegram"></a>&nbsp;&nbsp;
117
+ </div>
118
+ """
119
+ )
120
+
121
+ # Tabs for Beam Prediction and LoS/NLoS Classification
122
+ with gr.Tab("Beam Prediction Task"):
123
+ gr.Markdown("### Beam Prediction Task")
124
+
125
+ # Sliders for percentage and complexity
126
+ with gr.Row():
127
+ with gr.Column(elem_id="slider-container"):
128
+ gr.Markdown("Percentage of Data for Training")
129
+ percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
130
+ with gr.Column(elem_id="slider-container"):
131
+ gr.Markdown("Task Complexity")
132
+ complexity_slider_bp = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
133
+
134
+ # Image outputs (display the images side by side and set a smaller size for the images)
135
+ with gr.Row():
136
+ raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
137
+ embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
138
+
139
+ # Instant image updates when sliders change
140
+ percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
141
+ complexity_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp, complexity_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
142
+
143
+ with gr.Tab("LoS/NLoS Classification Task"):
144
+ gr.Markdown("### LoS/NLoS Classification Task")
145
+
146
+ # File uploader for uploading .py file
147
+ file_input = gr.File(label="Upload .py File", file_types=[".py"])
148
+
149
+ # Sliders for percentage and complexity
150
+ with gr.Row():
151
+ with gr.Column(elem_id="slider-container"):
152
+ gr.Markdown("Percentage of Data for Training")
153
+ percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, interactive=True, elem_id="vertical-slider")
154
+ with gr.Column(elem_id="slider-container"):
155
+ gr.Markdown("Task Complexity")
156
+ complexity_slider_los = gr.Slider(minimum=0, maximum=1, step=1, value=0, interactive=True, elem_id="vertical-slider")
157
+
158
+ # Image outputs (display the images side by side and set a smaller size for the images)
159
+ with gr.Row():
160
+ raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300, interactive=False)
161
+ embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300, interactive=False)
162
+
163
+ # Instant image updates based on file upload or slider changes
164
+ file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
165
+ percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
166
+ complexity_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los, complexity_slider_los], outputs=[raw_img_los, embeddings_img_los])
167
+
168
+ # Launch the app
169
+ if __name__ == "__main__":
170
+ demo.launch()