Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -456,6 +456,16 @@ with gr.Blocks(css="""
|
|
456 |
text-align: center;
|
457 |
}
|
458 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
""") as demo:
|
460 |
|
461 |
# Contact Section
|
@@ -469,11 +479,18 @@ with gr.Blocks(css="""
|
|
469 |
</a>
|
470 |
</div>
|
471 |
""")
|
472 |
-
|
473 |
# Tab for Beam Prediction Task
|
474 |
with gr.Tab("Beam Prediction Task"):
|
475 |
gr.Markdown("### Beam Prediction Task")
|
476 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
with gr.Row():
|
478 |
with gr.Column():
|
479 |
data_percentage_slider = gr.Slider(label="Data Percentage for Training", minimum=10, maximum=100, step=10, value=10)
|
@@ -491,12 +508,16 @@ with gr.Blocks(css="""
|
|
491 |
with gr.Tab("LoS/NLoS Classification Task"):
|
492 |
gr.Markdown("### LoS/NLoS Classification Task")
|
493 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
494 |
# Radio button for user choice: predefined data or upload dataset
|
495 |
choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Default Dataset")
|
496 |
|
497 |
-
# Dropdown for selecting percentage for predefined data
|
498 |
-
#percentage_dropdown_los = gr.Dropdown(choices=[f"{value:.3f}" for value in percentage_values_los], value=f"{percentage_values_los[0]:.3f}", label="Percentage of Data for Training")
|
499 |
-
#percentage_dropdown_los = gr.Dropdown(choices=list(range(20)), value=0, label="Percentage of Data for Training")
|
500 |
percentage_slider_los = gr.Slider(minimum=float(percentage_values_los[0]),
|
501 |
maximum=float(percentage_values_los[-1]),
|
502 |
step=float(percentage_values_los[1] - percentage_values_los[0]),
|
@@ -526,6 +547,7 @@ with gr.Blocks(css="""
|
|
526 |
percentage_slider_los.change(fn=handle_user_choice, inputs=[choice_radio, percentage_slider_los, file_input],
|
527 |
outputs=[raw_img_los, embeddings_img_los, output_textbox])
|
528 |
|
|
|
529 |
# Launch the app
|
530 |
if __name__ == "__main__":
|
531 |
demo.launch()
|
|
|
456 |
text-align: center;
|
457 |
}
|
458 |
|
459 |
+
.explanation-box {
|
460 |
+
font-size: 16px;
|
461 |
+
font-style: italic;
|
462 |
+
color: #4a4a4a;
|
463 |
+
padding: 15px;
|
464 |
+
background-color: #f0f0f0;
|
465 |
+
border-radius: 10px;
|
466 |
+
margin-bottom: 20px;
|
467 |
+
}
|
468 |
+
|
469 |
""") as demo:
|
470 |
|
471 |
# Contact Section
|
|
|
479 |
</a>
|
480 |
</div>
|
481 |
""")
|
482 |
+
|
483 |
# Tab for Beam Prediction Task
|
484 |
with gr.Tab("Beam Prediction Task"):
|
485 |
gr.Markdown("### Beam Prediction Task")
|
486 |
+
|
487 |
+
# Explanation section with creative spacing and minimal design
|
488 |
+
gr.Markdown("""
|
489 |
+
<div class="explanation-box">
|
490 |
+
In this task, you'll predict the strongest mmWave beam from a predefined codebook based on Sub-6 GHz channels. Adjust the data percentage and task complexity to observe how LWM performs on different settings.
|
491 |
+
</div>
|
492 |
+
""")
|
493 |
+
|
494 |
with gr.Row():
|
495 |
with gr.Column():
|
496 |
data_percentage_slider = gr.Slider(label="Data Percentage for Training", minimum=10, maximum=100, step=10, value=10)
|
|
|
508 |
with gr.Tab("LoS/NLoS Classification Task"):
|
509 |
gr.Markdown("### LoS/NLoS Classification Task")
|
510 |
|
511 |
+
# Explanation section with creative spacing
|
512 |
+
gr.Markdown("""
|
513 |
+
<div class="explanation-box">
|
514 |
+
Use this task to classify whether a channel is LoS (Line-of-Sight) or NLoS (Non-Line-of-Sight). You can either upload your own dataset or use the default dataset to explore how LWM embeddings compare to raw channels.
|
515 |
+
</div>
|
516 |
+
""")
|
517 |
+
|
518 |
# Radio button for user choice: predefined data or upload dataset
|
519 |
choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Default Dataset")
|
520 |
|
|
|
|
|
|
|
521 |
percentage_slider_los = gr.Slider(minimum=float(percentage_values_los[0]),
|
522 |
maximum=float(percentage_values_los[-1]),
|
523 |
step=float(percentage_values_los[1] - percentage_values_los[0]),
|
|
|
547 |
percentage_slider_los.change(fn=handle_user_choice, inputs=[choice_radio, percentage_slider_los, file_input],
|
548 |
outputs=[raw_img_los, embeddings_img_los, output_textbox])
|
549 |
|
550 |
+
|
551 |
# Launch the app
|
552 |
if __name__ == "__main__":
|
553 |
demo.launch()
|