wi-lab commited on
Commit
eaaf563
Β·
verified Β·
1 Parent(s): 761563c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -324,7 +324,7 @@ def classify_based_on_distance(train_data, train_labels, test_data):
324
 
325
  return torch.tensor(predictions) # Return predictions as a PyTorch tensor
326
 
327
- def plot_confusion_matrix(y_true, y_pred, title):
328
  cm = confusion_matrix(y_true, y_pred)
329
 
330
  # Calculate F1 Score
@@ -585,7 +585,7 @@ with gr.Blocks(css="""
585
  <div style="background-color: #f0f0f0; padding: 15px; border-radius: 10px; color: #333;">
586
  <h3 style="color: #0056b3;">πŸ” <b>LoS/NLoS Classification Task</b></h3>
587
  <ul style="padding-left: 20px;">
588
- <li><b>🎯 Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight).</li>
589
  <li><b>πŸ“‚ Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>h5py</b> format.</li>
590
  <li><b>πŸ’‘ Custom Dataset Requirements:</b>
591
  <ul>
@@ -594,7 +594,7 @@ with gr.Blocks(css="""
594
  </ul>
595
  </li>
596
  <li><b>πŸ”— Tip</b>: You can find guidance on how to structure your dataset in the provided model repository.</li>
597
- <li><b>πŸ’Ό No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</li>
598
  </ul>
599
  </div>
600
  """)
 
324
 
325
  return torch.tensor(predictions) # Return predictions as a PyTorch tensor
326
 
327
+ def plot_confusion_matrix(y_true, y_pred, title, light_mode=True):
328
  cm = confusion_matrix(y_true, y_pred)
329
 
330
  # Calculate F1 Score
 
585
  <div style="background-color: #f0f0f0; padding: 15px; border-radius: 10px; color: #333;">
586
  <h3 style="color: #0056b3;">πŸ” <b>LoS/NLoS Classification Task</b></h3>
587
  <ul style="padding-left: 20px;">
588
+ <li><b>🎯 Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight) with very small LWM CLS embeddings.</li>
589
  <li><b>πŸ“‚ Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>h5py</b> format.</li>
590
  <li><b>πŸ’‘ Custom Dataset Requirements:</b>
591
  <ul>
 
594
  </ul>
595
  </li>
596
  <li><b>πŸ”— Tip</b>: You can find guidance on how to structure your dataset in the provided model repository.</li>
597
+ <li><b>πŸ’Ό No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</il>
598
  </ul>
599
  </div>
600
  """)