Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -675,26 +675,22 @@ with gr.Blocks(css="""
|
|
675 |
hdf.create_dataset('labels', data=labels)
|
676 |
print("Dataset saved!")
|
677 |
|
|
|
678 |
# To use your preferred DeepMIMO scenarios for the custom dataset, please [clone the model and datasets](https://huggingface.co/wi-lab/lwm) and follow the instructions below:
|
679 |
-
from input_preprocess import DeepMIMO_data_gen deepmimo_data_cleaning label_gen
|
680 |
-
|
681 |
scenario_names = np.array([
|
682 |
"city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
|
683 |
"city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
|
684 |
])
|
685 |
-
scenario_name = scenario_names[0]
|
686 |
-
|
687 |
-
|
688 |
-
cleaned_deepmimo_data = deepmimo_data_cleaning(deepmimo_data)
|
689 |
|
690 |
-
channels = np.squeeze(np.array(cleaned_deepmimo_data), axis=1)
|
691 |
-
labels = label_gen('LoS/NLoS Classification', deepmimo_data, scenario_name)
|
692 |
```
|
693 |
""")
|
694 |
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
# Launch the app
|
699 |
if __name__ == "__main__":
|
700 |
demo.launch()
|
|
|
675 |
hdf.create_dataset('labels', data=labels)
|
676 |
print("Dataset saved!")
|
677 |
|
678 |
+
|
679 |
# To use your preferred DeepMIMO scenarios for the custom dataset, please [clone the model and datasets](https://huggingface.co/wi-lab/lwm) and follow the instructions below:
|
680 |
+
from input_preprocess import DeepMIMO_data_gen deepmimo_data_cleaning label_gen # Import required modules from the model repository
|
|
|
681 |
scenario_names = np.array([
|
682 |
"city_18_denver", "city_15_indianapolis", "city_19_oklahoma",
|
683 |
"city_12_fortworth", "city_11_santaclara", "city_7_sandiego"
|
684 |
])
|
685 |
+
scenario_name = scenario_names[0] # Select the scenario by choosing its index.
|
686 |
+
deepmimo_data = DeepMIMO_data_gen(scenario_name) # Generates ray-traced wireless channels for the selected scenario.
|
687 |
+
cleaned_deepmimo_data = deepmimo_data_cleaning(deepmimo_data) # Filters out users with no direct path to the base station (i.e., users with zero-valued channels).
|
|
|
688 |
|
689 |
+
channels = np.squeeze(np.array(cleaned_deepmimo_data), axis=1) # The "channels" array is now prepared for packing into the custom dataset in H5 format.
|
690 |
+
labels = label_gen('LoS/NLoS Classification', deepmimo_data, scenario_name) # Generates labels for each user, classifying them as Line-of-Sight (LoS) or Non-Line-of-Sight (NLoS), and prepares the "labels" array for inclusion in the custom dataset H5 file.
|
691 |
```
|
692 |
""")
|
693 |
|
|
|
|
|
|
|
694 |
# Launch the app
|
695 |
if __name__ == "__main__":
|
696 |
demo.launch()
|