Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -15,7 +15,7 @@ from sklearn.metrics import f1_score
|
|
15 |
import seaborn as sns
|
16 |
|
17 |
#################### BEAM PREDICTION #########################}
|
18 |
-
def beam_prediction_task(data_percentage, task_complexity,
|
19 |
# Folder naming convention based on input_type, data_percentage, and task_complexity
|
20 |
raw_folder = f"images/raw_{data_percentage/100:.1f}_{task_complexity}"
|
21 |
embeddings_folder = f"images/embedding_{data_percentage/100:.1f}_{task_complexity}"
|
@@ -24,7 +24,7 @@ def beam_prediction_task(data_percentage, task_complexity, user_mode="light"):
|
|
24 |
raw_cm = compute_average_confusion_matrix(raw_folder)
|
25 |
if raw_cm is not None:
|
26 |
raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
|
27 |
-
plot_confusion_matrix_beamPred(raw_cm, classes=np.arange(raw_cm.shape[0]), title=f"Raw Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=raw_cm_path,
|
28 |
raw_img = Image.open(raw_cm_path)
|
29 |
else:
|
30 |
raw_img = None
|
@@ -33,7 +33,7 @@ def beam_prediction_task(data_percentage, task_complexity, user_mode="light"):
|
|
33 |
embeddings_cm = compute_average_confusion_matrix(embeddings_folder)
|
34 |
if embeddings_cm is not None:
|
35 |
embeddings_cm_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
|
36 |
-
plot_confusion_matrix_beamPred(embeddings_cm, classes=np.arange(embeddings_cm.shape[0]), title=f"Embeddings Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=embeddings_cm_path,
|
37 |
embeddings_img = Image.open(embeddings_cm_path)
|
38 |
else:
|
39 |
embeddings_img = None
|
@@ -59,12 +59,12 @@ def compute_f1_score(cm):
|
|
59 |
f1 = np.nan_to_num(f1) # Replace NaN with 0
|
60 |
return np.mean(f1) # Return the mean F1-score across all classes
|
61 |
|
62 |
-
def plot_confusion_matrix_beamPred(cm, classes, title, save_path,
|
63 |
# Compute the average F1-score
|
64 |
avg_f1 = compute_f1_score(cm)
|
65 |
|
66 |
# Choose the color scheme based on the user's mode
|
67 |
-
if
|
68 |
plt.style.use('dark_background') # Use dark mode styling
|
69 |
text_color = 'white'
|
70 |
cmap = 'cividis' # Dark-mode-friendly colormap
|
@@ -474,6 +474,21 @@ def process_hdf5_file(uploaded_file, percentage):
|
|
474 |
sys.stdout = sys.__stdout__ # Reset print statements
|
475 |
|
476 |
######################## Define the Gradio interface ###############################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
477 |
with gr.Blocks(css="""
|
478 |
.slider-container {
|
479 |
display: inline-block;
|
@@ -534,6 +549,10 @@ with gr.Blocks(css="""
|
|
534 |
# Tab for Beam Prediction Task
|
535 |
with gr.Tab("Beam Prediction Task"):
|
536 |
#gr.Markdown("### Beam Prediction Task")
|
|
|
|
|
|
|
|
|
537 |
|
538 |
# Explanation section with creative spacing and minimal design
|
539 |
gr.Markdown("""
|
@@ -563,8 +582,9 @@ with gr.Blocks(css="""
|
|
563 |
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=500)
|
564 |
|
565 |
# Update the confusion matrices whenever sliders change
|
566 |
-
data_percentage_slider.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
|
567 |
-
task_complexity_dropdown.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
|
|
|
568 |
|
569 |
# Add a conclusion section at the bottom
|
570 |
gr.Markdown("""
|
|
|
15 |
import seaborn as sns
|
16 |
|
17 |
#################### BEAM PREDICTION #########################}
|
18 |
+
def beam_prediction_task(data_percentage, task_complexity, theme):
|
19 |
# Folder naming convention based on input_type, data_percentage, and task_complexity
|
20 |
raw_folder = f"images/raw_{data_percentage/100:.1f}_{task_complexity}"
|
21 |
embeddings_folder = f"images/embedding_{data_percentage/100:.1f}_{task_complexity}"
|
|
|
24 |
raw_cm = compute_average_confusion_matrix(raw_folder)
|
25 |
if raw_cm is not None:
|
26 |
raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
|
27 |
+
plot_confusion_matrix_beamPred(raw_cm, classes=np.arange(raw_cm.shape[0]), title=f"Raw Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=raw_cm_path, theme)
|
28 |
raw_img = Image.open(raw_cm_path)
|
29 |
else:
|
30 |
raw_img = None
|
|
|
33 |
embeddings_cm = compute_average_confusion_matrix(embeddings_folder)
|
34 |
if embeddings_cm is not None:
|
35 |
embeddings_cm_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
|
36 |
+
plot_confusion_matrix_beamPred(embeddings_cm, classes=np.arange(embeddings_cm.shape[0]), title=f"Embeddings Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=embeddings_cm_path, theme)
|
37 |
embeddings_img = Image.open(embeddings_cm_path)
|
38 |
else:
|
39 |
embeddings_img = None
|
|
|
59 |
f1 = np.nan_to_num(f1) # Replace NaN with 0
|
60 |
return np.mean(f1) # Return the mean F1-score across all classes
|
61 |
|
62 |
+
def plot_confusion_matrix_beamPred(cm, classes, title, save_path, theme):
|
63 |
# Compute the average F1-score
|
64 |
avg_f1 = compute_f1_score(cm)
|
65 |
|
66 |
# Choose the color scheme based on the user's mode
|
67 |
+
if theme == 'dark':
|
68 |
plt.style.use('dark_background') # Use dark mode styling
|
69 |
text_color = 'white'
|
70 |
cmap = 'cividis' # Dark-mode-friendly colormap
|
|
|
474 |
sys.stdout = sys.__stdout__ # Reset print statements
|
475 |
|
476 |
######################## Define the Gradio interface ###############################
|
477 |
+
# JavaScript to detect dark/light mode and pass it to Gradio as 'light' or 'dark'
|
478 |
+
detect_theme_js = """
|
479 |
+
<script>
|
480 |
+
function detectTheme() {
|
481 |
+
if (window.matchMedia && window.matchMedia('(prefers-color-scheme: dark)').matches) {
|
482 |
+
return 'dark';
|
483 |
+
} else {
|
484 |
+
return 'light';
|
485 |
+
}
|
486 |
+
}
|
487 |
+
document.getElementById('theme_output').value = detectTheme();
|
488 |
+
document.getElementById('theme_output').dispatchEvent(new Event('change'));
|
489 |
+
</script>
|
490 |
+
"""
|
491 |
+
|
492 |
with gr.Blocks(css="""
|
493 |
.slider-container {
|
494 |
display: inline-block;
|
|
|
549 |
# Tab for Beam Prediction Task
|
550 |
with gr.Tab("Beam Prediction Task"):
|
551 |
#gr.Markdown("### Beam Prediction Task")
|
552 |
+
gr.HTML(detect_theme_js)
|
553 |
+
|
554 |
+
# Hidden textbox to store the detected theme
|
555 |
+
theme_output = gr.Textbox(label="Detected Theme", elem_id="theme_output", visible=False)
|
556 |
|
557 |
# Explanation section with creative spacing and minimal design
|
558 |
gr.Markdown("""
|
|
|
582 |
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=500)
|
583 |
|
584 |
# Update the confusion matrices whenever sliders change
|
585 |
+
data_percentage_slider.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown, theme_output], outputs=[raw_img_bp, embeddings_img_bp])
|
586 |
+
task_complexity_dropdown.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown, theme_output], outputs=[raw_img_bp, embeddings_img_bp])
|
587 |
+
theme_output.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown, theme_output], outputs=[raw_img_bp, embeddings_img_bp])
|
588 |
|
589 |
# Add a conclusion section at the bottom
|
590 |
gr.Markdown("""
|