Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -368,7 +368,7 @@ def process_hdf5_file(uploaded_file, percentage):
|
|
368 |
sys.stdout = capture # Redirect print statements to capture
|
369 |
|
370 |
try:
|
371 |
-
model_repo_url = "https://huggingface.co/
|
372 |
model_repo_dir = "./LWM"
|
373 |
|
374 |
# Step 1: Clone the repository if not already done
|
@@ -491,7 +491,7 @@ with gr.Blocks(css="""
|
|
491 |
gr.Markdown("""
|
492 |
<div class="bold-highlight">
|
493 |
π Explore the pre-trained **LWM Model** here:
|
494 |
-
<a target="_blank" href="https://huggingface.co/
|
495 |
</div>
|
496 |
""")
|
497 |
|
@@ -501,20 +501,20 @@ with gr.Blocks(css="""
|
|
501 |
|
502 |
# Explanation section with creative spacing and minimal design
|
503 |
gr.Markdown("""
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
|
|
|
|
|
|
513 |
</ul>
|
514 |
-
</
|
515 |
-
<li>πΊοΈ **Dataset**: A combination of six scenarios from the DeepMIMO dataset (excluded from LWM pre-training) highlights the model's strong generalization abilities.</li>
|
516 |
-
</ul>
|
517 |
-
</div>
|
518 |
""")
|
519 |
#gr.Markdown("""
|
520 |
#<div class="explanation-box">
|
@@ -541,21 +541,21 @@ with gr.Blocks(css="""
|
|
541 |
|
542 |
# Explanation section with creative spacing
|
543 |
gr.Markdown("""
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
|
|
|
|
|
|
|
|
553 |
</ul>
|
554 |
-
</
|
555 |
-
<li>π **Tip**: You can find guidance on how to structure your dataset in the provided model repository.</li>
|
556 |
-
<li>πΌ **No Downstream Model**: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</li>
|
557 |
-
</ul>
|
558 |
-
</div>
|
559 |
""")
|
560 |
#gr.Markdown("""
|
561 |
#<div class="explanation-box">
|
|
|
368 |
sys.stdout = capture # Redirect print statements to capture
|
369 |
|
370 |
try:
|
371 |
+
model_repo_url = "https://huggingface.co/wi-lab/lwm"
|
372 |
model_repo_dir = "./LWM"
|
373 |
|
374 |
# Step 1: Clone the repository if not already done
|
|
|
491 |
gr.Markdown("""
|
492 |
<div class="bold-highlight">
|
493 |
π Explore the pre-trained **LWM Model** here:
|
494 |
+
<a target="_blank" href="https://huggingface.co/wi-lab/lwm">https://huggingface.co/wi-lab/lwm</a>
|
495 |
</div>
|
496 |
""")
|
497 |
|
|
|
501 |
|
502 |
# Explanation section with creative spacing and minimal design
|
503 |
gr.Markdown("""
|
504 |
+
<div style="background-color: #f0f0f0; padding: 15px; border-radius: 10px; color: #333;">
|
505 |
+
<h3 style="color: #0056b3;">π‘ <b>Beam Prediction Task</b></h3>
|
506 |
+
<ul style="padding-left: 20px;">
|
507 |
+
<li><b>π― Goal</b>: Predict the strongest <b>mmWave beam</b> from a predefined codebook using Sub-6 GHz channels.</li>
|
508 |
+
<li><b>βοΈ Adjust Settings</b>: Use the sliders to control the training data percentage and task complexity (beam count) to explore model performance.</li>
|
509 |
+
<li><b>π§ Inferences</b>:
|
510 |
+
<ul>
|
511 |
+
<li>π First, the LWM model extracts features.</li>
|
512 |
+
<li>π€ Then, the downstream residual 1D-CNN model (500K parameters) makes beam predictions.</li>
|
513 |
+
</ul>
|
514 |
+
</li>
|
515 |
+
<li><b>πΊοΈ Dataset</b>: A combination of six scenarios from the DeepMIMO dataset (excluded from LWM pre-training) highlights the model's strong generalization abilities.</li>
|
516 |
</ul>
|
517 |
+
</div>
|
|
|
|
|
|
|
518 |
""")
|
519 |
#gr.Markdown("""
|
520 |
#<div class="explanation-box">
|
|
|
541 |
|
542 |
# Explanation section with creative spacing
|
543 |
gr.Markdown("""
|
544 |
+
<div style="background-color: #f0f0f0; padding: 15px; border-radius: 10px; color: #333;">
|
545 |
+
<h3 style="color: #0056b3;">π <b>LoS/NLoS Classification Task</b></h3>
|
546 |
+
<ul style="padding-left: 20px;">
|
547 |
+
<li><b>π― Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight).</li>
|
548 |
+
<li><b>π Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>h5py</b> format.</li>
|
549 |
+
<li><b>π‘ Custom Dataset Requirements:</b>
|
550 |
+
<ul>
|
551 |
+
<li>π οΈ <b>channels</b> array: Shape (N,32,32)</li>
|
552 |
+
<li>π·οΈ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
|
553 |
+
</ul>
|
554 |
+
</li>
|
555 |
+
<li><b>π Tip</b>: You can find guidance on how to structure your dataset in the provided model repository.</li>
|
556 |
+
<li><b>πΌ No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</li>
|
557 |
</ul>
|
558 |
+
</div>
|
|
|
|
|
|
|
|
|
559 |
""")
|
560 |
#gr.Markdown("""
|
561 |
#<div class="explanation-box">
|