wi-lab commited on
Commit
cc312e8
Β·
verified Β·
1 Parent(s): 64c79fa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -29
app.py CHANGED
@@ -368,7 +368,7 @@ def process_hdf5_file(uploaded_file, percentage):
368
  sys.stdout = capture # Redirect print statements to capture
369
 
370
  try:
371
- model_repo_url = "https://huggingface.co/sadjadalikhani/lwm"
372
  model_repo_dir = "./LWM"
373
 
374
  # Step 1: Clone the repository if not already done
@@ -491,7 +491,7 @@ with gr.Blocks(css="""
491
  gr.Markdown("""
492
  <div class="bold-highlight">
493
  πŸš€ Explore the pre-trained **LWM Model** here:
494
- <a target="_blank" href="https://huggingface.co/sadjadalikhani/lwm/tree/main">https://huggingface.co/sadjadalikhani/lwm/tree/main</a>
495
  </div>
496
  """)
497
 
@@ -501,20 +501,20 @@ with gr.Blocks(css="""
501
 
502
  # Explanation section with creative spacing and minimal design
503
  gr.Markdown("""
504
- <div class="explanation-box">
505
- <h3>πŸ“‘ Beam Prediction Task</h3>
506
- <ul>
507
- <li>🎯 **Goal**: Predict the strongest **mmWave beam** from a predefined codebook using Sub-6 GHz channels.</li>
508
- <li>βš™οΈ **Adjust Settings**: Use the sliders to control the training data percentage and task complexity (beam count) to explore model performance.</li>
509
- <li>🧠 **Inferences**:
510
- <ul>
511
- <li>πŸ” First, the LWM model extracts features.</li>
512
- <li>πŸ€– Then, the downstream residual 1D-CNN model (500K parameters) makes beam predictions.</li>
 
 
 
513
  </ul>
514
- </li>
515
- <li>πŸ—ΊοΈ **Dataset**: A combination of six scenarios from the DeepMIMO dataset (excluded from LWM pre-training) highlights the model's strong generalization abilities.</li>
516
- </ul>
517
- </div>
518
  """)
519
  #gr.Markdown("""
520
  #<div class="explanation-box">
@@ -541,21 +541,21 @@ with gr.Blocks(css="""
541
 
542
  # Explanation section with creative spacing
543
  gr.Markdown("""
544
- <div class="explanation-box">
545
- <h3>πŸ” LoS/NLoS Classification Task</h3>
546
- <ul>
547
- <li>🎯 **Goal**: Classify whether a channel is **LoS** (Line-of-Sight) or **NLoS** (Non-Line-of-Sight).</li>
548
- <li>πŸ“‚ **Dataset**: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in **h5py** format.</li>
549
- <li>πŸ’‘ **Custom Dataset Requirements**:
550
- <ul>
551
- <li>πŸ› οΈ `channels` array: Shape (N,32,32)</li>
552
- <li>🏷️ `labels` array: Binary LoS/NLoS values (1/0)</li>
 
 
 
 
553
  </ul>
554
- </li>
555
- <li>πŸ”— **Tip**: You can find guidance on how to structure your dataset in the provided model repository.</li>
556
- <li>πŸ’Ό **No Downstream Model**: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</li>
557
- </ul>
558
- </div>
559
  """)
560
  #gr.Markdown("""
561
  #<div class="explanation-box">
 
368
  sys.stdout = capture # Redirect print statements to capture
369
 
370
  try:
371
+ model_repo_url = "https://huggingface.co/wi-lab/lwm"
372
  model_repo_dir = "./LWM"
373
 
374
  # Step 1: Clone the repository if not already done
 
491
  gr.Markdown("""
492
  <div class="bold-highlight">
493
  πŸš€ Explore the pre-trained **LWM Model** here:
494
+ <a target="_blank" href="https://huggingface.co/wi-lab/lwm">https://huggingface.co/wi-lab/lwm</a>
495
  </div>
496
  """)
497
 
 
501
 
502
  # Explanation section with creative spacing and minimal design
503
  gr.Markdown("""
504
+ <div style="background-color: #f0f0f0; padding: 15px; border-radius: 10px; color: #333;">
505
+ <h3 style="color: #0056b3;">πŸ“‘ <b>Beam Prediction Task</b></h3>
506
+ <ul style="padding-left: 20px;">
507
+ <li><b>🎯 Goal</b>: Predict the strongest <b>mmWave beam</b> from a predefined codebook using Sub-6 GHz channels.</li>
508
+ <li><b>βš™οΈ Adjust Settings</b>: Use the sliders to control the training data percentage and task complexity (beam count) to explore model performance.</li>
509
+ <li><b>🧠 Inferences</b>:
510
+ <ul>
511
+ <li>πŸ” First, the LWM model extracts features.</li>
512
+ <li>πŸ€– Then, the downstream residual 1D-CNN model (500K parameters) makes beam predictions.</li>
513
+ </ul>
514
+ </li>
515
+ <li><b>πŸ—ΊοΈ Dataset</b>: A combination of six scenarios from the DeepMIMO dataset (excluded from LWM pre-training) highlights the model's strong generalization abilities.</li>
516
  </ul>
517
+ </div>
 
 
 
518
  """)
519
  #gr.Markdown("""
520
  #<div class="explanation-box">
 
541
 
542
  # Explanation section with creative spacing
543
  gr.Markdown("""
544
+ <div style="background-color: #f0f0f0; padding: 15px; border-radius: 10px; color: #333;">
545
+ <h3 style="color: #0056b3;">πŸ” <b>LoS/NLoS Classification Task</b></h3>
546
+ <ul style="padding-left: 20px;">
547
+ <li><b>🎯 Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight).</li>
548
+ <li><b>πŸ“‚ Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>h5py</b> format.</li>
549
+ <li><b>πŸ’‘ Custom Dataset Requirements:</b>
550
+ <ul>
551
+ <li>πŸ› οΈ <b>channels</b> array: Shape (N,32,32)</li>
552
+ <li>🏷️ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
553
+ </ul>
554
+ </li>
555
+ <li><b>πŸ”— Tip</b>: You can find guidance on how to structure your dataset in the provided model repository.</li>
556
+ <li><b>πŸ’Ό No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</li>
557
  </ul>
558
+ </div>
 
 
 
 
559
  """)
560
  #gr.Markdown("""
561
  #<div class="explanation-box">