Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Using GPU Spaces

You can upgrade your Space to use a GPU accelerator using the Settings button in the top navigation bar of the Space. You can even request a free upgrade if you are building a cool demo for a side project!

Longer-term, we would also like to expose non-GPU hardware, like HPU, IPU or TPU. If you have a specific AI hardware you'd like to run on, please let us know (website at huggingface.co).

As soon as your Space is running on GPU you can see which hardware it’s running on directly from this badge:

Hardware Specs

In the following table, you can see the Specs for the different upgrade options.

Hardware GPU Memory CPU Memory Disk Hourly Price
CPU Basic - 2 vCPU 16 GB 50 GB Free!
CPU Upgrade - 8 vCPU 32 GB 50 GB $0.03
Nvidia T4 - small 16GB 4 vCPU 15 GB 50 GB $0.60
Nvidia T4 - medium 16GB 8 vCPU 30 GB 100 GB $0.90
Nvidia A10G - small 24GB 4 vCPU 15 GB 110 GB $1.05
Nvidia A10G - large 24GB 12 vCPU 46 GB 200 GB $3.15
Nvidia A100 - large 40GB 12 vCPU 142 GB 1000 GB $4.13

Configure hardware programmatically

You can programmatically configure your Space hardware using huggingface_hub. This allows for a wide range of use cases where you need to dynamically assign GPUs. Check out this guide for more details.

Framework specific requirements

Most Spaces should run out of the box after a GPU upgrade, but sometimes you’ll need to install CUDA versions of the machine learning frameworks you use. Please, follow this guide to ensure your Space takes advantage of the improved hardware.

PyTorch

You’ll need to install a version of PyTorch compatible with the built-in CUDA drivers. Adding the following two lines to your requirements.txt file should work:

--extra-index-url https://download.pytorch.org/whl/cu113
torch

You can verify whether the installation was successful by running the following code in your app.py and checking the output in your Space logs:

import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4

Many frameworks automatically use the GPU if one is available. This is the case for the Pipelines in 🤗 transformers, fastai and many others. In other cases, or if you use PyTorch directly, you may need to move your models and data to the GPU to ensure computation is done on the accelerator and not on the CPU. You can use PyTorch’s .to() syntax, for example:

model = load_pytorch_model()
model = model.to("cuda")

JAX

If you use JAX, you need to specify the URL that contains CUDA compatible packages. Please, add the following lines to your requirements.txt file:

-f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
jax[cuda11_pip]
jaxlib

After that, you can verify the installation by printing the output from the following code and checking it in your Space logs.

import jax

print(f"JAX devices: {jax.devices()}")
# JAX devices: [StreamExecutorGpuDevice(id=0, process_index=0)]
print(f"JAX device type: {jax.devices()[0].device_kind}")
# JAX device type: Tesla T4

Tensorflow

The default tensorflow installation should recognize the CUDA device. Just add tensorflow to your requirements.txt file and use the following code in your app.py to verify in your Space logs.

import tensorflow as tf
print(tf.config.list_physical_devices('GPU'))
# [PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

Billing

Billing on Spaces is based on hardware usage and is computed by the minute: you get charged for every minute the Space runs on the requested hardware, regardless of whether the Space is used.

During a Space’s lifecycle, it is only billed when the Space is actually Running. This means that there is no cost during build or startup.

If a running Space starts to fail, it will be automatically suspended and the billing will stop.

Spaces running on free hardware are suspended automatically if they are not used for an extended period of time (e.g. two days). Upgraded Spaces run indefinitely by default, even if there is no usage. You can change this behavior by setting a custom “sleep time” in the Space’s settings. To interrupt the billing on your Space, you can change the Hardware to CPU basic, or pause it.

Additional information about billing can be found in the dedicated Hub-wide section.

Community GPU Grants

Do you have an awesome Space but need help covering the GPU hardware upgrade costs? We love helping out those with an innovative Space so please feel free to apply for a community GPU grant and see if yours makes the cut! This application can be found in your Space hardware repo settings in the lower left corner under “sleep time settings”:

Community GPU Grant

Set a custom sleep time

If your Space runs on the default cpu-basic hardware, it will go to sleep if inactive for more than a set time (currently, 48 hours). Anyone visiting your Space will restart it automatically.

If you want your Space never to deactivate or if you want to set a custom sleep time, you need to upgrade to a paid Hardware.

By default, an upgraded Space will never go to sleep. However, you can use this setting for your upgraded Space to become idle (stopped stage) when it’s unused 😴. You are not going to be charged for the upgraded hardware while it is asleep. The Space will ‘wake up’ or get restarted once it receives a new visitor.

The following interface will then be available in your Spaces hardware settings:

The following options are available:

Pausing a Space

You can pause a Space from the repo settings. A “paused” Space means that the Space is on hold and will not use resources until manually restarted, and only the owner of a paused Space can restart it. Paused time is not billed.