Adding a task to the Hub

What's a task?

Tasks, or pipeline types, describe the "shape" of each model's API (inputs and outputs) and is used to determine which Inference API and widget we want to display for any given model.


This classification is rather coarse-grained (you can always add more fine-grained task name in your model tags), so you should rarely have to create a new task. If you do want to add support for a new task, this document explains the required steps.


Having a new task fully integrated in the Hub means that:

  • Users can search for all models of a given task.
  • The Inference API supports the task.
  • Users can try out models directly with the widget. 🏆

Note that you're not expected to implement all the steps. Adding a new task is a community effort, and multiple people can contribute to it. 🧑‍🤝‍🧑

To begin the process, open a new issue in the huggingface_hub repository. Please use the "Adding a new task" template. ⚠️Before doing any coding, it's suggested to go over this document. ⚠️

The first step is to upload a model for your proposed task. Once you have a model in the Hub for the new task, the next step is to enable it in the Inference API. There are three types of support that you can choose from:

  • 🤗 using a transformers model
  • 🐳 using a model from an officially supported library
  • 🖨️ using a model with custom inference code. This option is experimental and has downsides, so it's always suggested to use any of the other two approaches if possible.

Finally, there are a couple of UI elements that can be added, such as the task icon and the widget, that complete the integration in the Hub. 📷

Some steps are orthogonal, you don't need to do them in order. You don't need the Inference API to add the icon. This means that, even if there isn't full integration at the moment, users can still search for models of a given task.

Using Hugging Face transformers library

If your model is a transformers-based model, there is a 1:1 mapping between the Inference API task and a pipeline class. Here are some example PRs from the transformers library:

Once the pipeline is submitted and deployed, you should be able to use the Inference API for your model.

Using Community Inference API with a supported library

The Hub also supports over 10 open-source libraries in the Community Inference API.

Adding a new task is relatively straightforward and requires 2 PRs:

Adding Community Inference API for a quick prototype

My model is not supported by any library. Am I doomed? 😱

No, you're not! We have an experimental Docker image for quick prototyping of new tasks and introduction of new libraries. This is the generic Inference API and should allow you to have a new task in production with very little development from your side.

How does it work from the user point of view? Users create a copy of a template repo for their given task. Users then need to define their requirements.txt and fill Note that this is not intended for fast production use cases, but more for quick experimentation and prototyping.

UI elements

The Hub allows users to filter models by a given task. In order to do this, you need to add the task to a couple of places and pick an icon for the task.

  1. Add the task type to Types.ts

In interfaces/Types.ts, you need to do a couple of things

  • Add the type to PipelineType. Note that they are sorted in different categories (NLP, Audio, Computer Vision and others).
  • Specify the icon color in PIPELINE_TAG_ICO_CLASS.
  • Specify the display order in PIPELINE_TAGS_DISPLAY_ORDER.
  1. Choose an icon

You can add an icon in the lib/Icons directory. We usually choose carbon icons from


Once the task is in production, what could be more exciting that implementing some way for users to play directly with the models in their browser? 🤩 You can find all the widgets here.

In case you would be interested in contributing with a widget, you can look at the implementation of all the widgets. You can also find WIP documentation on how to implement a widget in