Back to home
All Datasets 🏷
All datasets from our datasets repository and community bucket.
Also check out the list of supported Metrics 📉.
167 results
ADE-Corpus-V2 Dataset: Adverse Drug Reaction Data. This is a dataset for Classification if a sentence is ADE-related (True) or not (False) and Relation Extraction between Adverse Drug Event and Drug. DRUG-AE.rel provides relations between drugs and adverse effects. DRUG-DOSE.rel provides relations between drugs and dosages. ADE-NEG.txt provides all sentences in the ADE corpus that DO NOT contain any drug-related adverse effects.
It is a large dataset of Android applications belonging to 23 differentapps categories, which provides an overview of the types of feedback users report on the apps and documents the evolution of the related code metrics. The dataset contains about 395 applications of the F-Droid repository, including around 600 versions, 280,000 user reviews (extracted with specific text mining approaches)
The ASSIN (Avaliação de Similaridade Semântica e INferência textual) corpus is a corpus annotated with pairs of sentences written in Portuguese that is suitable for the exploration of textual entailment and paraphrasing classifiers. The corpus contains pairs of sentences extracted from news articles written in European Portuguese (EP) and Brazilian Portuguese (BP), obtained from Google News Portugal and Brazil, respectively. To create the corpus, the authors started by collecting a set of news articles describing the same event (one news article from Google News Portugal and another from Google News Brazil) from Google News. Then, they employed Latent Dirichlet Allocation (LDA) models to retrieve pairs of similar sentences between sets of news articles that were grouped together around the same topic. For that, two LDA models were trained (for EP and for BP) on external and large-scale collections of unannotated news articles from Portuguese and Brazilian news providers, respectively. Then, the authors defined a lower and upper threshold for the sentence similarity score of the retrieved pairs of sentences, taking into account that high similarity scores correspond to sentences that contain almost the same content (paraphrase candidates), and low similarity scores correspond to sentences that are very different in content from each other (no-relation candidates). From the collection of pairs of sentences obtained at this stage, the authors performed some manual grammatical corrections and discarded some of the pairs wrongly retrieved. Furthermore, from a preliminary analysis made to the retrieved sentence pairs the authors noticed that the number of contradictions retrieved during the previous stage was very low. Additionally, they also noticed that event though paraphrases are not very frequent, they occur with some frequency in news articles. Consequently, in contrast with the majority of the currently available corpora for other languages, which consider as labels “neutral”, “entailment” and “contradiction” for the task of RTE, the authors of the ASSIN corpus decided to use as labels “none”, “entailment” and “paraphrase”. Finally, the manual annotation of pairs of sentences was performed by human annotators. At least four annotators were randomly selected to annotate each pair of sentences, which is done in two steps: (i) assigning a semantic similarity label (a score between 1 and 5, from unrelated to very similar); and (ii) providing an entailment label (one sentence entails the other, sentences are paraphrases, or no relation). Sentence pairs where at least three annotators do not agree on the entailment label were considered controversial and thus discarded from the gold standard annotations. The full dataset has 10,000 sentence pairs, half of which in Brazilian Portuguese and half in European Portuguese. Either language variant has 2,500 pairs for training, 500 for validation and 2,000 for testing.
The ASSIN 2 corpus is composed of rather simple sentences. Following the procedures of SemEval 2014 Task 1. The training and validation data are composed, respectively, of 6,500 and 500 sentence pairs in Brazilian Portuguese, annotated for entailment and semantic similarity. Semantic similarity values range from 1 to 5, and text entailment classes are either entailment or none. The test data are composed of approximately 3,000 sentence pairs with the same annotation. All data were manually annotated.
Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop. In this task participants designed systems to identify substrings in sentences corresponding to gene name mentions. A variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721. Here we present brief descriptions of all the methods used and a statistical analysis of the results. We also demonstrate that, by combining the results from all submissions, an F score of 0.9066 is feasible, and furthermore that the best result makes use of the lowest scoring submissions. For more details, see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2559986/ The original dataset can be downloaded from: https://biocreative.bioinformatics.udel.edu/resources/corpora/biocreative-ii-corpus/ This dataset has been converted to CoNLL format for NER using the following tool: https://github.com/spyysalo/standoff2conll
A parallel news corpus in Turkish, Kurdish and English. Bianet collects 3,214 Turkish articles with their sentence-aligned Kurdish or English translations from the Bianet online newspaper. 3 languages, 3 bitexts total number of files: 6 total number of tokens: 2.25M total number of sentence fragments: 0.14M
BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Each US patent application is filed under a Cooperative Patent Classification (CPC) code. There are nine such classification categories: A (Human Necessities), B (Performing Operations; Transporting), C (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions), F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting), G (Physics), H (Electricity), and Y (General tagging of new or cross-sectional technology) There are two features: - description: detailed description of patent. - abstract: Patent abastract.
The BrWaC (Brazilian Portuguese Web as Corpus) is a large corpus constructed following the Wacky framework, which was made public for research purposes. The current corpus version, released in January 2017, is composed by 3.53 million documents, 2.68 billion tokens and 5.79 million types. Please note that this resource is available solely for academic research purposes, and you agreed not to use it for any commercial applications. Manually download at https://www.inf.ufrgs.br/pln/wiki/index.php?title=BrWaC
In this paper, we introduce Chinese AI and Law challenge dataset (CAIL2018), the first large-scale Chinese legal dataset for judgment prediction. CAIL contains more than 2.6 million criminal cases published by the Supreme People's Court of China, which are several times larger than other datasets in existing works on judgment prediction. Moreover, the annotations of judgment results are more detailed and rich. It consists of applicable law articles, charges, and prison terms, which are expected to be inferred according to the fact descriptions of cases. For comparison, we implement several conventional text classification baselines for judgment prediction and experimental results show that it is still a challenge for current models to predict the judgment results of legal cases, especially on prison terms. To help the researchers make improvements on legal judgment prediction.
A parallel corpus of theses and dissertations abstracts in English and Portuguese were collected from the CAPES website (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) - Brazil. The corpus is sentence aligned for all language pairs. Approximately 240,000 documents were collected and aligned using the Hunalign algorithm.
This corpus is an attempt to recreate the dataset used for training XLM-R. This corpus comprises of monolingual data for 100+ languages and also includes data for romanized languages (indicated by *_rom). This was constructed using the urls and paragraph indices provided by the CC-Net repository by processing January-December 2018 Commoncrawl snapshots. Each file comprises of documents separated by double-newlines and paragraphs within the same document separated by a newline. The data is generated using the open source CC-Net repository. No claims of intellectual property are made on the work of preparation of the corpus.
A dataset adopting the FEVER methodology that consists of 1,535 real-world claims regarding climate-change collected on the internet. Each claim is accompanied by five manually annotated evidence sentences retrieved from the English Wikipedia that support, refute or do not give enough information to validate the claim totalling in 7,675 claim-evidence pairs. The dataset features challenging claims that relate multiple facets and disputed cases of claims where both supporting and refuting evidence are present.
The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense question-answering in the sentence completion style of SWAG. As opposed to other automatically generated NLI datasets, CODAH is adversarially constructed by humans who can view feedback from a pre-trained model and use this information to design challenging commonsense questions. Our experimental results show that CODAH questions present a complementary extension to the SWAG dataset, testing additional modes of common sense.
Named entities are phrases that contain the names of persons, organizations, locations, times and quantities. Example: [PER Wolff] , currently a journalist in [LOC Argentina] , played with [PER Del Bosque] in the final years of the seventies in [ORG Real Madrid] . The shared task of CoNLL-2002 concerns language-independent named entity recognition. We will concentrate on four types of named entities: persons, locations, organizations and names of miscellaneous entities that do not belong to the previous three groups. The participants of the shared task will be offered training and test data for at least two languages. They will use the data for developing a named-entity recognition system that includes a machine learning component. Information sources other than the training data may be used in this shared task. We are especially interested in methods that can use additional unannotated data for improving their performance (for example co-training). The train/validation/test sets are available in Spanish and Dutch. For more details see https://www.clips.uantwerpen.be/conll2002/ner/ and https://www.aclweb.org/anthology/W02-2024/
ConvAI is a dataset of human-to-bot conversations labelled for quality. This data can be used to train a metric for evaluating dialogue systems. Moreover, it can be used in the development of chatbots themselves: it contains the information on the quality of utterances and entire dialogues, that can guide a dialogue system in search of better answers.
ConvAI is a dataset of human-to-bot conversations labelled for quality. This data can be used to train a metric for evaluating dialogue systems. Moreover, it can be used in the development of chatbots themselves: it contains the information on the quality of utterances and entire dialogues, that can guide a dialogue system in search of better answers.
The Conv AI 3 challenge is organized as part of the Search-oriented Conversational AI (SCAI) EMNLP workshop in 2020. The main aim of the conversational systems is to return an appropriate answer in response to the user requests. However, some user requests might be ambiguous. In Information Retrieval (IR) settings such a situation is handled mainly through the diversification of search result page. It is however much more challenging in dialogue settings. Hence, we aim to study the following situation for dialogue settings: - a user is asking an ambiguous question (where ambiguous question is a question to which one can return > 1 possible answers) - the system must identify that the question is ambiguous, and, instead of trying to answer it directly, ask a good clarifying question.
We study negotiation dialogues where two agents, a buyer and a seller, negotiate over the price of an time for sale. We collected a dataset of more than 6K negotiation dialogues over multiple categories of products scraped from Craigslist. Our goal is to develop an agent that negotiates with humans through such conversations. The challenge is to handle both the negotiation strategy and the rich language for bargaining.
The dataset consists of 9008 sentences that are labelled with fine-grained polarity in the range from -2 to 2 (negative to postive). The quality of the fine-grained is not cross validated and is therefore subject to uncertainties; however, the simple polarity has been cross validated and therefore is considered to be more correct.
Benchmark dataset for low-resource multiclass classification, with 4,015 training, 500 testing, and 500 validation examples, each labeled as part of five classes. Each sample can be a part of multiple classes. Collected as tweets.
This dataset contains 30,000 messages drawn from events including an earthquake in Haiti in 2010, an earthquake in Chile in 2010, floods in Pakistan in 2010, super-storm Sandy in the U.S.A. in 2012, and news articles spanning a large number of years and 100s of different disasters. The data has been encoded with 36 different categories related to disaster response and has been stripped of messages with sensitive information in their entirety. Upon release, this is the featured dataset of a new Udacity course on Data Science and the AI4ALL summer school and is especially utile for text analytics and natural language processing (NLP) tasks and models. The input data in this job contains thousands of untranslated disaster-related messages and their English translations.
DREAM is a multiple-choice Dialogue-based REAding comprehension exaMination dataset. In contrast to existing reading comprehension datasets, DREAM is the first to focus on in-depth multi-turn multi-party dialogue understanding.
Original source: Website and documentatuion from the European Central Bank, compiled and made available by Alberto Simoes (thank you very much!) 19 languages, 170 bitexts total number of files: 340 total number of tokens: 757.37M total number of sentence fragments: 30.55M
EiTB-ParCC: Parallel Corpus of Comparable News. A Basque-Spanish parallel corpus provided by Vicomtech (https://www.vicomtech.org), extracted from comparable news produced by the Basque public broadcasting group Euskal Irrati Telebista.
This is a parallel corpus made out of PDF documents from the European Medicines Agency. All files are automatically converted from PDF to plain text using pdftotext with the command line arguments -layout -nopgbrk -eol unix. There are some known problems with tables and multi-column layouts - some of them are fixed in the current version. source: http://www.emea.europa.eu/ 22 languages, 231 bitexts total number of files: 41,957 total number of tokens: 311.65M total number of sentence fragments: 26.51M
Fake news has become a major societal issue and a technical challenge for social media companies to identify. This content is difficult to identify because the term "fake news" covers intentionally false, deceptive stories as well as factual errors, satire, and sometimes, stories that a person just does not like. Addressing the problem requires clear definitions and examples. In this work, we present a dataset of fake news and satire stories that are hand coded, verified, and, in the case of fake news, include rebutting stories. We also include a thematic content analysis of the articles, identifying major themes that include hyperbolic support or condemnation of a gure, conspiracy theories, racist themes, and discrediting of reliable sources. In addition to releasing this dataset for research use, we analyze it and show results based on language that are promising for classification purposes. Overall, our contribution of a dataset and initial analysis are designed to support future work by fake news researchers.
Contains Farsi (Persian) datasets for Machine Learning tasks, particularly NLP. These datasets have been extracted from the RSS feed of two Farsi news agency websites: - Hamshahri - RadioFarda
Giga-word corpus for French-English from WMT2010 collected by Chris Callison-Burch 2 languages, total number of files: 452 total number of tokens: 1.43G total number of sentence fragments: 47.55M
Strongly Generalizable Question Answering (GrailQA) is a new large-scale, high-quality dataset for question answering on knowledge bases (KBQA) on Freebase with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It can be used to test three levels of generalization in KBQA: i.i.d., compositional, and zero-shot.
This dataset contains 93700 hotel reviews in Arabic language.The hotel reviews were collected from Booking.com website during June/July 2016.The reviews are expressed in Modern Standard Arabic as well as dialectal Arabic.The following table summarize some tatistics on the HARD Dataset.
The HAREM is a Portuguese language corpus commonly used for Named Entity Recognition tasks. It includes about 93k words, from 129 different texts, from several genres, and language varieties. The split of this dataset version follows the division made by [1], where 7% HAREM documents are the validation set and the miniHAREM corpus (with about 65k words) is the test set. There are two versions of the dataset set, a version that has a total of 10 different named entity classes (Person, Organization, Location, Value, Date, Title, Thing, Event, Abstraction, and Other) and a "selective" version with only 5 classes (Person, Organization, Location, Value, and Date). It's important to note that the original version of the HAREM dataset has 2 levels of NER details, namely "Category" and "Sub-type". The dataset version processed here ONLY USE the "Category" level of the original dataset. [1] Souza, Fábio, Rodrigo Nogueira, and Roberto Lotufo. "BERTimbau: Pretrained BERT Models for Brazilian Portuguese." Brazilian Conference on Intelligent Systems. Springer, Cham, 2020.
This dataset is a new knowledge-base (KB) of hasPart relationships, extracted from a large corpus of generic statements. Complementary to other resources available, it is the first which is all three of: accurate (90% precision), salient (covers relationships a person may mention), and has high coverage of common terms (approximated as within a 10 year old’s vocabulary), as well as having several times more hasPart entries than in the popular ontologies ConceptNet and WordNet. In addition, it contains information about quantifiers, argument modifiers, and links the entities to appropriate concepts in Wikipedia and WordNet.
A collection of news article headlines in Hausa from VOA Hausa. Each headline is labeled with one of the following classes: Nigeria, Africa, World, Health or Politics. The dataset was presented in the paper: Hedderich, Adelani, Zhu, Alabi, Markus, Klakow: Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on African Languages (EMNLP 2020).
Existing question answering datasets focus on dealing with homogeneous information, based either only on text or KB/Table information alone. However, as human knowledge is distributed over heterogeneous forms, using homogeneous information alone might lead to severe coverage problems. To fill in the gap, we present HybridQA, a new large-scale question-answering dataset that requires reasoning on heterogeneous information. Each question is aligned with a Wikipedia table and multiple free-form corpora linked with the entities in the table. The questions are designed to aggregate both tabular information and text information, i.e., lack of either form would render the question unanswerable.
In this paper, we introduce a large-scale Indonesian summarization dataset. We harvest articles from this http URL, an online news portal, and obtain 215,827 document-summary pairs. We leverage pre-trained language models to develop benchmark extractive and abstractive summarization methods over the dataset with multilingual and monolingual BERT-based models. We include a thorough error analysis by examining machine-generated summaries that have low ROUGE scores, and expose both issues with ROUGE it-self, as well as with extractive and abstractive summarization models.
Parallel Text Corpora for Multi-Domain Translation System created by BPPT (Indonesian Agency for the Assessment and Application of Technology) for PAN Localization Project (A Regional Initiative to Develop Local Language Computing Capacity in Asia). The dataset contains around 24K sentences divided in 4 difference topics (Economic, international, Science and Technology and Sport).
A dataset of about 20k questions that are elicited from readers as they naturally read through a document sentence by sentence. Compared to existing datasets, INQUISITIVE questions target more towards high-level (semantic and discourse) comprehension of text. Because these questions are generated while the readers are processing the information, the questions directly communicate gaps between the reader’s and writer’s knowledge about the events described in the text, and are not necessarily answered in the document itself. This type of question reflects a real-world scenario: if one has questions during reading, some of them are answered by the text later on, the rest are not, but any of them would help further the reader’s understanding at the particular point when they asked it. This resource could enable question generation models to simulate human-like curiosity and cognitive processing, which may open up a new realm of applications.
It is a Turkish news data set consisting of 273601 news in 17 categories, compiled from print media and news websites between 2010 and 2017 by the Interpress (https://www.interpress.com/) media monitoring company.
The data came from the GENIA version 3.02 corpus (Kim et al., 2003). This was formed from a controlled search on MEDLINE using the MeSH terms human, blood cells and transcription factors. From this search 2,000 abstracts were selected and hand annotated according to a small taxonomy of 48 classes based on a chemical classification. Among the classes, 36 terminal classes were used to annotate the GENIA corpus.
A parallel corpus of KDE4 localization files (v.2). 92 languages, 4,099 bitexts total number of files: 75,535 total number of tokens: 60.75M total number of sentence fragments: 8.89M
This dataset contains over 63,000 book reviews in Arabic.It is the largest sentiment analysis dataset for Arabic to-date.The book reviews were harvested from the website Goodreads during the month or March 2013.Each book review comes with the goodreads review id, the user id, the book id, the rating (1 to 5) and the text of the review.
LeNER-Br is a Portuguese language dataset for named entity recognition applied to legal documents. LeNER-Br consists entirely of manually annotated legislation and legal cases texts and contains tags for persons, locations, time entities, organizations, legislation and legal cases. To compose the dataset, 66 legal documents from several Brazilian Courts were collected. Courts of superior and state levels were considered, such as Supremo Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas Gerais and Tribunal de Contas da União. In addition, four legislation documents were collected, such as "Lei Maria da Penha", giving a total of 70 documents
LIAR is a dataset for fake news detection with 12.8K human labeled short statements from politifact.com's API, and each statement is evaluated by a politifact.com editor for its truthfulness. The distribution of labels in the LIAR dataset is relatively well-balanced: except for 1,050 pants-fire cases, the instances for all other labels range from 2,063 to 2,638. In each case, the labeler provides a lengthy analysis report to ground each judgment.
This is LiveQA, a Chinese dataset constructed from play-by-play live broadcast. It contains 117k multiple-choice questions written by human commentators for over 1,670 NBA games, which are collected from the Chinese Hupu website.
MC-TACO (Multiple Choice TemporAl COmmonsense) is a dataset of 13k question-answer pairs that require temporal commonsense comprehension. A system receives a sentence providing context information, a question designed to require temporal commonsense knowledge, and multiple candidate answers. More than one candidate answer can be plausible. The task is framed as binary classification: givent he context, the question, and the candidate answer, the task is to determine whether the candidate answer is plausible ("yes") or not ("no").
A large medical text dataset (14Go) curated to 4Go for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. For example, DHF can be disambiguated to dihydrofolate, diastolic heart failure, dengue hemorragic fever or dihydroxyfumarate
The MedDialog dataset (English) contains conversations (in English) between doctors and patients.It has 0.26 million dialogues. The data is continuously growing and more dialogues will be added. The raw dialogues are from healthcaremagic.com and icliniq.com. All copyrights of the data belong to healthcaremagic.com and icliniq.com.
Arabic Poetry Metric Classification. The dataset contains the verses and their corresponding meter classes.Meter classes are represented as numbers from 0 to 13. The dataset can be highly useful for further research in order to improve the field of Arabic poems’ meter classification.The train dataset contains 47,124 records and the test dataset contains 8316 records.
The MRQA 2019 Shared Task focuses on generalization in question answering. An effective question answering system should do more than merely interpolate from the training set to answer test examples drawn from the same distribution: it should also be able to extrapolate to out-of-distribution examples — a significantly harder challenge. The dataset is a collection of 18 existing QA dataset (carefully selected subset of them) and converted to the same format (SQuAD format). Among these 18 datasets, six datasets were made available for training, six datasets were made available for development, and the final six for testing. The dataset is released as part of the MRQA 2019 Shared Task.
The Third International Chinese Language Processing Bakeoff was held in Spring 2006 to assess the state of the art in two important tasks: word segmentation and named entity recognition. Twenty-nine groups submitted result sets in the two tasks across two tracks and a total of five corpora. We found strong results in both tasks as well as continuing challenges. MSRA NER is one of the provided dataset. There are three types of NE, PER (person), ORG (organization) and LOC (location). The dataset is in the BIO scheme. For more details see https://faculty.washington.edu/levow/papers/sighan06.pdf
MultiReQA contains the sentence boundary annotation from eight publicly available QA datasets including SearchQA, TriviaQA, HotpotQA, NaturalQuestions, SQuAD, BioASQ, RelationExtraction, and TextbookQA. Five of these datasets, including SearchQA, TriviaQA, HotpotQA, NaturalQuestions, SQuAD, contain both training and test data, and three, including BioASQ, RelationExtraction, TextbookQA, contain only the test data
Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section of a paper based on its abstract and the articles it references.
Our goal is to build systems that collaborate with people by exchanging information through natural language and reasoning over structured knowledge base. In the MutualFriend task, two agents, A and B, each have a private knowledge base, which contains a list of friends with multiple attributes (e.g., name, school, major, etc.). The agents must chat with each other to find their unique mutual friend.
This paper presents the disease name and concept annotations of the NCBI disease corpus, a collection of 793 PubMed abstracts fully annotated at the mention and concept level to serve as a research resource for the biomedical natural language processing community. Each PubMed abstract was manually annotated by two annotators with disease mentions and their corresponding concepts in Medical Subject Headings (MeSH®) or Online Mendelian Inheritance in Man (OMIM®). Manual curation was performed using PubTator, which allowed the use of pre-annotations as a pre-step to manual annotations. Fourteen annotators were randomly paired and differing annotations were discussed for reaching a consensus in two annotation phases. In this setting, a high inter-annotator agreement was observed. Finally, all results were checked against annotations of the rest of the corpus to assure corpus-wide consistency. For more details, see: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951655/ The original dataset can be downloaded from: https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/NCBI_corpus.zip This dataset has been converted to CoNLL format for NER using the following tool: https://github.com/spyysalo/standoff2conll Note: there is a duplicate document (PMID 8528200) in the original data, and the duplicate is recreated in the converted data.
This dataset provides version 1115 of the belief extracted by CMU's Never Ending Language Learner (NELL) and version 1110 of the candidate belief extracted by NELL. See http://rtw.ml.cmu.edu/rtw/overview. NELL is an open information extraction system that attempts to read the Clueweb09 of 500 million web pages (http://boston.lti.cs.cmu.edu/Data/clueweb09/) and general web searches. The dataset has 4 configurations: nell_belief, nell_candidate, nell_belief_sentences, and nell_candidate_sentences. nell_belief is certainties of belief are lower. The two sentences config extracts the CPL sentence patterns filled with the applicable 'best' literal string for the entities filled into the sentence patterns. And also provides sentences found using web searches containing the entities and relationships. There are roughly 21M entries for nell_belief_sentences, and 100M sentences for nell_candidate_sentences.
A parallel corpus of News Commentaries provided by WMT for training SMT. The source is taken from CASMACAT: http://www.casmacat.eu/corpus/news-commentary.html 12 languages, 63 bitexts total number of files: 61,928 total number of tokens: 49.66M total number of sentence fragments: 1.93M
First benchmark dataset for sentence entailment in the low-resource Filipino language. Constructed through exploting the structure of news articles. Contains 600,000 premise-hypothesis pairs, in 70-15-15 split for training, validation, and testing.
The researchers of OCLAR Marwan et al. (2019), they gathered Arabic costumer reviews from Google reviewsa and Zomato website (https://www.zomato.com/lebanon) on wide scope of domain, including restaurants, hotels, hospitals, local shops, etc.The corpus finally contains 3916 reviews in 5-rating scale. For this research purpose, the positive class considers rating stars from 5 to 3 of 3465 reviews, and the negative class is represented from values of 1 and 2 of about 451 texts.
Texts from the Ofis Publik ar Brezhoneg (Breton Language Board) provided by Francis Tyers 2 languages, total number of files: 278 total number of tokens: 2.12M total number of sentence fragments: 0.13M
This is a new collection of translated movie subtitles from http://www.opensubtitles.org/. IMPORTANT: If you use the OpenSubtitle corpus: Please, add a link to http://www.opensubtitles.org/ to your website and to your reports and publications produced with the data! This is a slightly cleaner version of the subtitle collection using improved sentence alignment and better language checking. 62 languages, 1,782 bitexts total number of files: 3,735,070 total number of tokens: 22.10G total number of sentence fragments: 3.35G
OPUS-100 is English-centric, meaning that all training pairs include English on either the source or target side. The corpus covers 100 languages (including English).OPUS-100 contains approximately 55M sentence pairs. Of the 99 language pairs, 44 have 1M sentence pairs of training data, 73 have at least 100k, and 95 have at least 10k.
This is a collection of copyright free books aligned by Andras Farkas, which are available from http://www.farkastranslations.com/bilingual_books.php Note that the texts are rather dated due to copyright issues and that some of them are manually reviewed (check the meta-data at the top of the corpus files in XML). The source is multilingually aligned, which is available from http://www.farkastranslations.com/bilingual_books.php. In OPUS, the alignment is formally bilingual but the multilingual alignment can be recovered from the XCES sentence alignment files. Note also that the alignment units from the original source may include multi-sentence paragraphs, which are split and sentence-aligned in OPUS. All texts are freely available for personal, educational and research use. Commercial use (e.g. reselling as parallel books) and mass redistribution without explicit permission are not granted. Please acknowledge the source when using the data! 16 languages, 64 bitexts total number of files: 158 total number of tokens: 19.50M total number of sentence fragments: 0.91M
A collection of translation memories provided by the JRC. Source: https://ec.europa.eu/jrc/en/language-technologies/dgt-translation-memory 25 languages, 299 bitexts total number of files: 817,410 total number of tokens: 2.13G total number of sentence fragments: 113.52M
The Finlex Data Base is a comprehensive collection of legislative and other judicial information of Finland, which is available in Finnish, Swedish and partially in English. This corpus is taken from the Semantic Finlex serice that provides the Finnish and Swedish data as linked open data and also raw XML files.
A parallel corpus of GNOME localization files. Source: https://l10n.gnome.org 187 languages, 12,822 bitexts total number of files: 113,344 total number of tokens: 267.27M total number of sentence fragments: 58.12M
This is a Croatian-English parallel corpus of transcribed and translated TED talks, originally extracted from https://wit3.fbk.eu. The corpus is compiled by Željko Agić and is taken from http://lt.ffzg.hr/zagic provided under the CC-BY-NC-SA license. 2 languages, total number of files: 2 total number of tokens: 2.81M total number of sentence fragments: 0.17M
A parallel corpus of Ubuntu localization files. Source: https://translations.launchpad.net 244 languages, 23,988 bitexts total number of files: 30,959 total number of tokens: 29.84M total number of sentence fragments: 7.73M
This is a corpus of parallel sentences extracted from Wikipedia by Krzysztof Wołk and Krzysztof Marasek. Please cite the following publication if you use the data: Krzysztof Wołk and Krzysztof Marasek: Building Subject-aligned Comparable Corpora and Mining it for Truly Parallel Sentence Pairs., Procedia Technology, 18, Elsevier, p.126-132, 2014 20 languages, 36 bitexts total number of files: 114 total number of tokens: 610.13M total number of sentence fragments: 25.90M
The OrangeSum dataset was inspired by the XSum dataset. It was created by scraping the "Orange Actu" website: https://actu.orange.fr/. Orange S.A. is a large French multinational telecommunications corporation, with 266M customers worldwide. Scraped pages cover almost a decade from Feb 2011 to Sep 2020. They belong to five main categories: France, world, politics, automotive, and society. The society category is itself divided into 8 subcategories: health, environment, people, culture, media, high-tech, unsual ("insolite" in French), and miscellaneous. Each article featured a single-sentence title as well as a very brief abstract, both professionally written by the author of the article. These two fields were extracted from each page, thus creating two summarization tasks: OrangeSum Title and OrangeSum Abstract.
PearRead is a dataset of scientific peer reviews available to help researchers study this important artifact. The dataset consists of over 14K paper drafts and the corresponding accept/reject decisions in top-tier venues including ACL, NIPS and ICLR, as well as over 10K textual peer reviews written by experts for a subset of the papers.
People's Daily NER Dataset is a commonly used dataset for Chinese NER, with text from People's Daily (人民日报), the largest official newspaper. The dataset is in BIO scheme. Entity types are: PER (person), ORG (organization) and LOC (location).
Person SenTiment (PerSenT) is a crowd-sourced dataset that captures the sentiment of an author towards the main entity in a news article. This dataset contains annotation for 5.3k documents and 38k paragraphs covering 3.2k unique entities. The dataset consists of sentiment annotations on news articles about people. For each article, annotators judge what the author’s sentiment is towards the main (target) entity of the article. The annotations also include similar judgments on paragraphs within the article. To split the dataset, entities into 4 mutually exclusive sets. Due to the nature of news collections, some entities tend to dominate the collection. In the collection, there were four entities which were the main entity in nearly 800 articles. To avoid these entities from dominating the train or test splits, we moved them to a separate test collection. We split the remaining into a training, dev, and test sets at random. Thus our collection includes one standard test set consisting of articles drawn at random (Test Standard -- `test_random`), while the other is a test set which contains multiple articles about a small number of popular entities (Test Frequent -- `test_fixed`).
A parallel corpus originally extracted from http://se.php.net/download-docs.php. The original documents are written in English and have been partly translated into 21 languages. The original manuals contain about 500,000 words. The amount of actually translated texts varies for different languages between 50,000 and 380,000 words. The corpus is rather noisy and may include parts from the English original in some of the translations. The corpus is tokenized and each language pair has been sentence aligned. 23 languages, 252 bitexts total number of files: 71,414 total number of tokens: 3.28M total number of sentence fragments: 1.38M
To apply eyeshadow without a brush, should I use a cotton swab or a toothpick? Questions requiring this kind of physical commonsense pose a challenge to state-of-the-art natural language understanding systems. The PIQA dataset introduces the task of physical commonsense reasoning and a corresponding benchmark dataset Physical Interaction: Question Answering or PIQA. Physical commonsense knowledge is a major challenge on the road to true AI-completeness, including robots that interact with the world and understand natural language. PIQA focuses on everyday situations with a preference for atypical solutions. The dataset is inspired by instructables.com, which provides users with instructions on how to build, craft, bake, or manipulate objects using everyday materials. The underlying task is formualted as multiple choice question answering: given a question `q` and two possible solutions `s1`, `s2`, a model or a human must choose the most appropriate solution, of which exactly one is correct. The dataset is further cleaned of basic artifacts using the AFLite algorithm which is an improvement of adversarial filtering. The dataset contains 16,000 examples for training, 2,000 for development and 3,000 for testing.
In Task 6-1, the participants are to distinguish between normal/non-harmful tweets (class: 0) and tweets that contain any kind of harmful information (class: 1). This includes cyberbullying, hate speech and related phenomena. In Task 6-2, the participants shall distinguish between three classes of tweets: 0 (non-harmful), 1 (cyberbullying), 2 (hate-speech). There are various definitions of both cyberbullying and hate-speech, some of them even putting those two phenomena in the same group. The specific conditions on which we based our annotations for both cyberbullying and hate-speech, which have been worked out during ten years of research will be summarized in an introductory paper for the task, however, the main and definitive condition to 1 distinguish the two is whether the harmful action is addressed towards a private person(s) (cyberbullying), or a public person/entity/large group (hate-speech).
PolEval is a SemEval-inspired evaluation campaign for natural language processing tools for Polish.Submitted solutions compete against one another within certain tasks selected by organizers, using available data and are evaluated according topre-established procedures. One of the tasks in PolEval-2019 was Machine Translation (Task-4). The task is to train as good as possible machine translation system, using any technology,with limited textual resources.The competition will be done for 2 language pairs, more popular English-Polish (into Polish direction) and pair that can be called low resourcedRussian-Polish (in both directions). Here, Polish-English is also made available to allow for training in both directions. However, the test data is ONLY available for English-Polish.
`prachathai-67k`: News Article Corpus and Multi-label Text Classificdation from Prachathai.com The prachathai-67k dataset was scraped from the news site Prachathai. We filtered out those articles with less than 500 characters of body text, mostly images and cartoons. It contains 67,889 articles wtih 12 curated tags from August 24, 2004 to November 15, 2018. The dataset was originally scraped by @lukkiddd and cleaned by @cstorm125. You can also see preliminary exploration at https://github.com/PyThaiNLP/prachathai-67k/blob/master/exploration.ipynb
The dataset contains question-answer pairs to model verbal predicate-argument structure. The questions start with wh-words (Who, What, Where, What, etc.) and contain a verb predicate in the sentence; the answers are phrases in the sentence. There were 2 datsets used in the paper, newswire and wikipedia. Unfortunately the newswiredataset is built from CoNLL-2009 English training set that is covered under license Thus, we are providing only Wikipedia training set here. Please check README.md for more details on newswire dataset. For the Wikipedia domain, randomly sampled sentences from the English Wikipedia (excluding questions and sentences with fewer than 10 or more than 60 words) were taken. This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
QED, is a linguistically informed, extensible framework for explanations in question answering. A QED explanation specifies the relationship between a question and answer according to formal semantic notions such as referential equality, sentencehood, and entailment. It is an expertannotated dataset of QED explanations built upon a subset of the Google Natural Questions dataset.
The QCRI Educational Domain Corpus (formerly QCRI AMARA Corpus) is an open multilingual collection of subtitles for educational videos and lectures collaboratively transcribed and translated over the AMARA web-based platform. Developed by: Qatar Computing Research Institute, Arabic Language Technologies Group The QED Corpus is made public for RESEARCH purpose only. The corpus is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Copyright Qatar Computing Research Institute. All rights reserved. 225 languages, 9,291 bitexts total number of files: 271,558 total number of tokens: 371.76M total number of sentence fragments: 30.93M
A parallel corpus of full-text scientific articles collected from Scielo database in the following languages: English, Portuguese and Spanish. The corpus is sentence aligned for all language pairs, as well as trilingual aligned for a small subset of sentences. Alignment was carried out using the Hunalign algorithm.
A new multi-target dataset of 5.4K TLDRs over 3.2K papers. SCITLDR contains both author-written and expert-derived TLDRs, where the latter are collected using a novel annotation protocol that produces high-quality summaries while minimizing annotation burden.
Propagandistic news articles use specific techniques to convey their message, such as whataboutism, red Herring, and name calling, among many others. The Propaganda Techniques Corpus (PTC) allows to study automatic algorithms to detect them. We provide a permanent leaderboard to allow researchers both to advertise their progress and to be up-to-speed with the state of the art on the tasks offered (see below for a definition).
ShARC, a conversational QA task, requires a system to answer user questions based on rules expressed in natural language text. However, it is found that in the ShARC dataset there are multiple spurious patterns that could be exploited by neural models. SharcModified is a new dataset which reduces the patterns identified in the original dataset. To reduce the sensitivity of neural models, for each occurence of an instance conforming to any of the patterns, we automatically construct alternatives where we choose to either replace the current instance with an alternative instance which does not exhibit the pattern; or retain the original instance. The modified ShARC has two versions sharc-mod and history-shuffled. For morre details refer to Appendix A.3 .
The SMS Spam Collection v.1 is a public set of SMS labeled messages that have been collected for mobile phone spam research. It has one collection composed by 5,574 English, real and non-enconded messages, tagged according being legitimate (ham) or spam.
This is a collection of parallel corpora collected by Hercules Dalianis and his research group for bilingual dictionary construction. More information in: Hercules Dalianis, Hao-chun Xing, Xin Zhang: Creating a Reusable English-Chinese Parallel Corpus for Bilingual Dictionary Construction, In Proceedings of LREC2010 (source: http://people.dsv.su.se/~hercules/SEC/) and Konstantinos Charitakis (2007): Using Parallel Corpora to Create a Greek-English Dictionary with UPLUG, In Proceedings of NODALIDA 2007. Afrikaans-English: Aldin Draghoender and Mattias Kanhov: Creating a reusable English – Afrikaans parallel corpora for bilingual dictionary construction 4 languages, 3 bitexts total number of files: 6 total number of tokens: 1.32M total number of sentence fragments: 0.15M
We have developed an efficient algorithm and implementation of a dictionary-based approach to named entity recognition, which we here use to identifynames of species and other taxa in text. The tool, SPECIES, is more than an order of magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard corpus and on a new corpus of 800 abstracts, which were manually annotated after the development of the tool. The corpus comprises abstracts from journals selected to represent many taxonomic groups, which gives insights into which types of organism names are hard to detect and which are easy. Finally, we have tagged organism names in the entire Medline database and developed a web resource, ORGANISMS, that makes the results accessible to the broad community of biologists.
Given a partial description like "she opened the hood of the car," humans can reason about the situation and anticipate what might come next ("then, she examined the engine"). SWAG (Situations With Adversarial Generations) is a large-scale dataset for this task of grounded commonsense inference, unifying natural language inference and physically grounded reasoning. The dataset consists of 113k multiple choice questions about grounded situations (73k training, 20k validation, 20k test). Each question is a video caption from LSMDC or ActivityNet Captions, with four answer choices about what might happen next in the scene. The correct answer is the (real) video caption for the next event in the video; the three incorrect answers are adversarially generated and human verified, so as to fool machines but not humans. SWAG aims to be a benchmark for evaluating grounded commonsense NLI and for learning representations. The full data contain more information, but the regular configuration will be more interesting for modeling (note that the regular data are shuffled). The test set for leaderboard submission is under the regular configuration.
The first gold standard Tamil-English code-switched, sentiment-annotated corpus containing 15,744 comment posts from YouTube. Train: 11,335 Validation: 1,260 and Test: 3,149. This makes the largest general domain sentiment dataset for this relatively low-resource language with code-mixing phenomenon. The dataset contains all the three types of code-mixed sentences - Inter-Sentential switch, Intra-Sentential switch and Tag switching. Most comments were written in Roman script with either Tamil grammar with English lexicon or English grammar with Tamil lexicon. Some comments were written in Tamil script with English expressions in between.
This is a collection of Quran translations compiled by the Tanzil project The translations provided at this page are for non-commercial purposes only. If used otherwise, you need to obtain necessary permission from the translator or the publisher. If you are using more than three of the following translations in a website or application, we require you to put a link back to this page to make sure that subsequent users have access to the latest updates. 42 languages, 878 bitexts total number of files: 105 total number of tokens: 22.33M total number of sentence fragments: 1.01M
A parallel corpus of TED talk subtitles provided by CASMACAT: http://www.casmacat.eu/corpus/ted2013.html. The files are originally provided by https://wit3.fbk.eu. 15 languages, 14 bitexts total number of files: 28 total number of tokens: 67.67M total number of sentence fragments: 3.81M
Thai Literature Corpora (TLC): Corpora of machine-ingestible Thai classical literature texts. Release: 6/25/19 It consists of two datasets: ## TLC set It is texts from [Vajirayana Digital Library](https://vajirayana.org/), stored by chapters and stanzas (non-tokenized). tlc v.2.0 (6/17/19 : a total of 34 documents, 292,270 lines, 31,790,734 characters) tlc v.1.0 (6/11/19 : a total of 25 documents, 113,981 lines, 28,775,761 characters) ## TNHC set It is texts from Thai National Historical Corpus, stored by lines (manually tokenized). tnhc v.1.0 (6/25/19 : a total of 47 documents, 756,478 lines, 13,361,142 characters)
The data set is taken from kemik group http://www.kemik.yildiz.edu.tr/ The data are pre-processed for the text categorization, collocations are found, character set is corrected, and so forth. We named TTC4900 by mimicking the name convention of TTC 3600 dataset shared by the study http://journals.sagepub.com/doi/abs/10.1177/0165551515620551
On social media, Arabic speakers tend to express themselves in their own local dialect. To do so, Tunisians use "Tunisian Arabizi", which consists in supplementing numerals to the Latin script rather than the Arabic alphabet. TUNIZI is the first Tunisian Arabizi Dataset including 3K sentences, balanced, covering different topics, preprocessed and annotated as positive and negative.
The TupleInf Open IE dataset contains Open IE tuples extracted from 263K sentences that were used by the solver in “Answering Complex Questions Using Open Information Extraction” (referred as Tuple KB, T). These sentences were collected from a large Web corpus using training questions from 4th and 8th grade as queries. This dataset contains 156K sentences collected for 4th grade questions and 107K sentences for 8th grade questions. Each sentence is followed by the Open IE v4 tuples using their simple format.
A translation of the word pair similarity dataset wordsim-353 to Twi. The dataset was presented in the paper Alabi et al.: Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yorùbá and Twi (LREC 2020).
The Universal Declaration of Human Rights (UDHR) is a milestone document in the history of human rights. Drafted by representatives with different legal and cultural backgrounds from all regions of the world, it set out, for the first time, fundamental human rights to be universally protected. The Declaration was adopted by the UN General Assembly in Paris on 10 December 1948 during its 183rd plenary meeting. The dataset includes translations of the document in 464 languages and dialects. © 1996 – 2009 The Office of the High Commissioner for Human Rights This plain text version prepared by the “UDHR in Unicode” project, https://www.unicode.org/udhr.
UMC005 English-Urdu is a parallel corpus of texts in English and Urdu language with sentence alignments. The corpus can be used for experiments with statistical machine translation. The texts come from four different sources: - Quran - Bible - Penn Treebank (Wall Street Journal) - Emille corpus The authors provide the religious texts of Quran and Bible for direct download. Because of licensing reasons, Penn and Emille texts cannot be redistributed freely. However, if you already hold a license for the original corpora, we are able to provide scripts that will recreate our data on your disk. Our modifications include but are not limited to the following: - Correction of Urdu translations and manual sentence alignment of the Emille texts. - Manually corrected sentence alignment of the other corpora. - Our data split (training-development-test) so that our published experiments can be reproduced. - Tokenization (optional, but needed to reproduce our experiments). - Normalization (optional) of e.g. European vs. Urdu numerals, European vs. Urdu punctuation, removal of Urdu diacritics.
United nations general assembly resolutions: A six-language parallel corpus. This is a collection of translated documents from the United Nations originally compiled into a translation memory by Alexandre Rafalovitch, Robert Dale (see http://uncorpora.org). 6 languages, 15 bitexts total number of files: 6 total number of tokens: 18.87M total number of sentence fragments: 0.44M
This is a collection of translated documents from the United Nations. This corpus is available in all 6 official languages of the UN, consisting of around 300 million words per language
This parallel corpus consists of manually translated UN documents from the last 25 years (1990 to 2014) for the six official UN languages, Arabic, Chinese, English, French, Russian, and Spanish.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
“Urdu Sentiment Corpus” (USC) shares the dat of Urdu tweets for the sentiment analysis and polarity detection. The dataset is consisting of tweets and overall, the dataset is comprising over 17, 185 tokens with 52% records as positive, and 48 % records as negative.
Tags: PER(人名), LOC(地点名), GPE(行政区名), ORG(机构名) Label Tag Meaning PER PER.NAM 名字(张三) PER.NOM 代称、类别名(穷人) LOC LOC.NAM 特指名称(紫玉山庄) LOC.NOM 泛称(大峡谷、宾馆) GPE GPE.NAM 行政区的名称(北京) ORG ORG.NAM 特定机构名称(通惠医院) ORG.NOM 泛指名称、统称(文艺公司)
Write & Improve (Yannakoudakis et al., 2018) is an online web platform that assists non-native English students with their writing. Specifically, students from around the world submit letters, stories, articles and essays in response to various prompts, and the W&I system provides instant feedback. Since W&I went live in 2014, W&I annotators have manually annotated some of these submissions and assigned them a CEFR level.
WikiANN (sometimes called PAN-X) is a multilingual named entity recognition dataset consisting of Wikipedia articles annotated with LOC (location), PER (person), and ORG (organisation) tags in the IOB2 format. This version corresponds to the balanced train, dev, and test splits of Rahimi et al. (2019), which supports 176 of the 282 languages from the original WikiANN corpus.
This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task. Task 1 uses Wikipedia data for 6 language pairs that includes high-resource English--German (En-De) and English--Chinese (En-Zh), medium-resource Romanian--English (Ro-En) and Estonian--English (Et-En), and low-resource Sinhalese--English (Si-En) and Nepalese--English (Ne-En), as well as a dataset with a combination of Wikipedia articles and Reddit articles for Russian-English (En-Ru). The datasets were collected by translating sentences sampled from source language articles using state-of-the-art NMT models built using the fairseq toolkit and annotated with Direct Assessment (DA) scores by professional translators. Each sentence was annotated following the FLORES setup, which presents a form of DA, where at least three professional translators rate each sentence from 0-100 according to the perceived translation quality. DA scores are standardised using the z-score by rater. Participating systems are required to score sentences according to z-standardised DA scores.
This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task. Task 2 evaluates the application of QE for post-editing purposes. It consists of predicting: - A/ Word-level tags. This is done both on source side (to detect which words caused errors) and target side (to detect mistranslated or missing words). - A1/ Each token is tagged as either `OK` or `BAD`. Additionally, each gap between two words is tagged as `BAD` if one or more missing words should have been there, and `OK` otherwise. Note that number of tags for each target sentence is 2*N+1, where N is the number of tokens in the sentence. - A2/ Tokens are tagged as `OK` if they were correctly translated, and `BAD` otherwise. Gaps are not tagged. - B/ Sentence-level HTER scores. HTER (Human Translation Error Rate) is the ratio between the number of edits (insertions/deletions/replacements) needed and the reference translation length.
This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task. The goal of this task 3 is to predict document-level quality scores as well as fine-grained annotations.
Wizard-of-Oz (WOZ) is a dataset for training task-oriented dialogue systems. The dataset is designed around the task of finding a restaurant in the Cambridge, UK area. There are three informable slots (food, pricerange,area) that users can use to constrain the search and six requestable slots (address, phone, postcode plus the three informable slots) that the user can ask a value for once a restaurant has been offered.
XGLUE is a new benchmark dataset to evaluate the performance of cross-lingual pre-trained models with respect to cross-lingual natural language understanding and generation. The benchmark is composed of the following 11 tasks: - NER - POS Tagging (POS) - News Classification (NC) - MLQA - XNLI - PAWS-X - Query-Ad Matching (QADSM) - Web Page Ranking (WPR) - QA Matching (QAM) - Question Generation (QG) - News Title Generation (NTG) For more information, please take a look at https://microsoft.github.io/XGLUE/.
Yahoo Non-Factoid Question Dataset is derived from Yahoo's Webscope L6 collection using machine learning techiques such that the questions would contain non-factoid answers.The dataset contains 87,361 questions and their corresponding answers. Each question contains its best answer along with additional other answers submitted by users. Only the best answer was reviewed in determining the quality of the question-answer pair.
Yahoo! Answers Topic Classification is text classification dataset. The dataset is the Yahoo! Answers corpus as of 10/25/2007. The Yahoo! Answers topic classification dataset is constructed using 10 largest main categories. From all the answers and other meta-information, this dataset only used the best answer content and the main category information.
A collection of news article headlines in Yoruba from BBC Yoruba. Each headline is labeled with one of the following classes: africa, entertainment, health, nigeria, politics, sport or world. The dataset was presented in the paper: Hedderich, Adelani, Zhu, Alabi, Markus, Klakow: Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on African Languages (EMNLP 2020).
A translation of the word pair similarity dataset wordsim-353 to Yorùbá. The dataset was presented in the paper Alabi et al.: Massive vs. Curated Embeddings for Low-Resourced Languages: the Case of Yorùbá and Twi (LREC 2020).