Transformers documentation

Falcon3

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.47.1).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Falcon3

Overview

Falcon3 represents a natural evolution from previous releases, emphasizing expanding the models’ science, math, and code capabilities. This iteration includes five base models: Falcon3-1B-Base, Falcon3-3B-Base, Falcon3-Mamba-7B-Base, Falcon3-7B-Base, and Falcon3-10B-Base. In developing these models, we incorporated several key innovations aimed at improving the models’ performances while reducing training costs:

One pre-training: We conducted a single large-scale pretraining run on the 7B model, using 2048 H100 GPU chips, leveraging 14 trillion tokens featuring web, code, STEM, and curated high-quality and multilingual data. Depth up-scaling for improved reasoning: Building on recent studies on the effects of model depth, we upscaled the 7B model to a 10B parameters model by duplicating the redundant layers and continuing pre-training with 2TT of high-quality data. This yielded Falcon3-10B-Base which achieves state-of-the-art zero-shot and few-shot performance for models under 13B parameters. Knowledge distillation for better tiny models: To provide compact and efficient alternatives, we developed Falcon3-1B-Base and Falcon3-3B-Base by leveraging pruning and knowledge distillation techniques, using less than 100GT of curated high-quality data, thereby redefining pre-training efficiency.

Resources

< > Update on GitHub