File size: 28,013 Bytes
8f8b054
 
 
 
cacf045
2a77201
 
340b448
 
d1b5811
 
 
90c33f0
044aa43
 
04efe9c
b6a7e6d
c6aa746
 
 
c95d871
c6aa746
 
 
 
 
c536685
c6aa746
 
 
 
 
 
 
 
9167024
c6aa746
 
 
 
 
 
d05c994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f23306e
d05c994
 
f5ccec5
f23306e
 
 
 
 
 
 
 
 
 
b32bf67
f23306e
f5ccec5
f23306e
 
f5ccec5
f23306e
 
0034c8b
f23306e
 
0034c8b
f23306e
 
f5ccec5
f23306e
f5ccec5
f23306e
ceb94a2
f23306e
f5ccec5
 
 
f23306e
c6aa746
 
fc197f1
 
 
 
 
 
 
 
 
 
c6aa746
 
 
 
 
 
fc197f1
 
 
 
 
 
 
 
 
 
 
c6aa746
 
 
 
 
 
 
b6a7e6d
c6aa746
 
b6a7e6d
 
c6aa746
b6a7e6d
ebca844
c6aa746
244e2b5
 
 
86755ca
f23306e
b6a7e6d
 
 
 
dc661de
 
b6a7e6d
 
 
 
86755ca
 
f23306e
 
 
 
 
 
 
 
 
 
86755ca
b6a7e6d
f23306e
 
 
 
86755ca
f23306e
 
 
 
 
 
 
 
86755ca
f23306e
b6a7e6d
f23306e
b6a7e6d
f23306e
b6a7e6d
 
 
 
7cd2fc2
 
b6a7e6d
 
 
 
 
 
ad8c1ce
b6a7e6d
 
 
 
 
 
ad8c1ce
b6a7e6d
 
 
 
 
 
 
 
7cd2fc2
6b8b0b6
7cd2fc2
5ccfb52
b6a7e6d
 
7cd2fc2
5ccfb52
b6a7e6d
5ccfb52
b6a7e6d
5ccfb52
 
2a77201
 
 
 
 
 
 
 
 
 
 
 
 
11dd9d5
7cd2fc2
 
11dd9d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cd2fc2
11dd9d5
7cd2fc2
a8bcd0c
11dd9d5
7cd2fc2
a8bcd0c
11dd9d5
6d6f3c6
 
 
 
 
11dd9d5
 
 
 
 
 
 
 
 
d1b5811
7cd2fc2
 
11dd9d5
7cd2fc2
11dd9d5
469d918
11dd9d5
 
d1b5811
11dd9d5
469d918
11dd9d5
 
ef6f553
11dd9d5
d1b5811
11dd9d5
 
 
6d6f3c6
11dd9d5
6d6f3c6
469d918
11dd9d5
 
 
469d918
 
 
11dd9d5
 
 
469d918
 
11dd9d5
469d918
64d3617
d1b5811
64d3617
122a1ed
 
9167024
64d3617
469d918
64d3617
 
 
 
9167024
64d3617
 
 
 
 
 
 
 
9167024
64d3617
 
 
122a1ed
64d3617
9167024
64d3617
 
5fc4eb8
7ff3365
7fe40fc
 
37dedc6
7ff3365
 
 
 
 
 
 
11dd9d5
 
 
 
 
ef6f553
11dd9d5
 
 
 
ef6f553
11dd9d5
 
b75d54e
7cd2fc2
11dd9d5
 
 
 
cc312e8
2587718
469d918
11dd9d5
2587718
6d6f3c6
2587718
469d918
11dd9d5
 
 
 
 
bd2ccaf
11dd9d5
 
 
 
 
 
 
 
 
 
ef6f553
11dd9d5
 
d1b5811
11dd9d5
 
d1b5811
a392854
11dd9d5
06b54b2
11dd9d5
0875164
a392854
11dd9d5
 
0875164
 
11dd9d5
 
 
d1b5811
11dd9d5
 
8138582
bef8ac3
 
6d6f3c6
 
 
7cd2fc2
11dd9d5
 
 
7cd2fc2
6d6f3c6
11dd9d5
 
 
 
6d6f3c6
 
0875164
11dd9d5
6d6f3c6
 
 
11dd9d5
 
 
 
 
 
 
 
 
8f8b054
b6a7e6d
8f8b054
 
6d6f3c6
 
8f8b054
 
3d0b315
c9b91a3
 
 
 
 
 
 
 
 
 
64c79fa
 
 
 
 
 
 
 
cbea7da
 
 
b19fbcc
 
 
 
 
 
 
 
8f8b054
96126a5
 
 
 
 
 
 
 
 
 
 
 
64c79fa
 
 
b19fbcc
cc312e8
64c79fa
 
c9b91a3
c6aa746
11dd9d5
b19fbcc
c9b91a3
 
 
cc312e8
 
 
 
 
 
 
 
 
 
 
 
64c79fa
cc312e8
c9b91a3
 
11dd9d5
c6aa746
 
64ad2b4
11dd9d5
 
b32bf67
 
11dd9d5
c6aa746
f038d97
 
11dd9d5
b19fbcc
 
 
bc49788
b19fbcc
 
 
c6aa746
8f8b054
b19fbcc
469d918
c9b91a3
 
cc312e8
 
 
 
 
 
 
 
 
 
 
 
 
64c79fa
cc312e8
c9b91a3
 
b6a7e6d
6b8b0b6
b6a7e6d
b6261fc
 
 
 
 
b6a7e6d
 
 
 
 
6d6f3c6
c6aa746
 
cbea7da
469d918
b6a7e6d
 
 
 
 
 
 
a79cfa4
b6a7e6d
 
 
a79cfa4
b6a7e6d
8f8b054
b19fbcc
 
 
bc49788
b19fbcc
 
 
8f8b054
 
4d63ad9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import f1_score
import seaborn as sns

#################### BEAM PREDICTION #########################}
def beam_prediction_task(data_percentage, task_complexity):
    # Folder naming convention based on input_type, data_percentage, and task_complexity
    raw_folder = f"images/raw_{data_percentage/100:.1f}_{task_complexity}"
    embeddings_folder = f"images/embedding_{data_percentage/100:.1f}_{task_complexity}"

    # Process raw confusion matrix
    raw_cm = compute_average_confusion_matrix(raw_folder)
    if raw_cm is not None:
        raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
        plot_confusion_matrix_beamPred(raw_cm, classes=np.arange(raw_cm.shape[0]), title=f"Raw Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=raw_cm_path)
        raw_img = Image.open(raw_cm_path)
    else:
        raw_img = None

    # Process embeddings confusion matrix
    embeddings_cm = compute_average_confusion_matrix(embeddings_folder)
    if embeddings_cm is not None:
        embeddings_cm_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
        plot_confusion_matrix_beamPred(embeddings_cm, classes=np.arange(embeddings_cm.shape[0]), title=f"Embeddings Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=embeddings_cm_path)
        embeddings_img = Image.open(embeddings_cm_path)
    else:
        embeddings_img = None

    return raw_img, embeddings_img

from sklearn.metrics import f1_score

# Function to compute the F1-score based on the confusion matrix
def compute_f1_score(cm):
    # Compute precision and recall
    TP = np.diag(cm)
    FP = np.sum(cm, axis=0) - TP
    FN = np.sum(cm, axis=1) - TP
    
    precision = TP / (TP + FP)
    recall = TP / (TP + FN)
    
    # Handle division by zero in precision or recall
    precision = np.nan_to_num(precision)
    recall = np.nan_to_num(recall)
    
    # Compute F1 score
    f1 = 2 * (precision * recall) / (precision + recall)
    f1 = np.nan_to_num(f1)  # Replace NaN with 0
    return np.mean(f1)  # Return the mean F1-score across all classes

def plot_confusion_matrix_beamPred(cm, classes, title, save_path, light_mode=True):
    # Compute the average F1-score
    avg_f1 = compute_f1_score(cm)

    # Choose the color scheme based on the mode
    if light_mode:
        plt.style.use('default')  # Use default (light) mode styling
        text_color = 'black'
        cmap = 'Blues'  # Light-mode-friendly colormap
    else:
        plt.style.use('dark_background')  # Use dark mode styling
        text_color = 'white'
        cmap = 'cividis'  # Dark-mode-friendly colormap

    plt.figure(figsize=(10, 10))

    # Plot the confusion matrix with a dark-mode compatible colormap
    sns.heatmap(cm, cmap=cmap, cbar=True, linecolor='white', vmin=0, vmax=cm.max(), alpha=0.85)

    # Add F1-score to the title
    plt.title(f"{title}\n(F1 Score: {avg_f1:.3f})", color=text_color, fontsize=14)

    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, color=text_color, fontsize=14)  # Adjust text color based on the mode
    plt.yticks(tick_marks, classes, color=text_color, fontsize=14)  # Adjust text color based on the mode

    plt.ylabel('True label', color=text_color, fontsize=14)
    plt.xlabel('Predicted label', color=text_color, fontsize=14)
    plt.tight_layout()

    # Save the plot as an image
    plt.savefig(save_path, transparent=True)  # Transparent to blend with the site background
    plt.close()

    # Return the saved image
    return Image.open(save_path)


def compute_average_confusion_matrix(folder):
    confusion_matrices = []
    max_num_labels = 0

    # First pass to determine the maximum number of labels
    for file in os.listdir(folder):
        if file.endswith(".csv"):
            data = pd.read_csv(os.path.join(folder, file))
            num_labels = len(np.unique(data["Target"]))
            max_num_labels = max(max_num_labels, num_labels)

    # Second pass to calculate the confusion matrices and pad if necessary
    for file in os.listdir(folder):
        if file.endswith(".csv"):
            data = pd.read_csv(os.path.join(folder, file))
            y_true = data["Target"]
            y_pred = data["Top-1 Prediction"]
            num_labels = len(np.unique(y_true))
            
            # Compute confusion matrix
            cm = confusion_matrix(y_true, y_pred, labels=np.arange(max_num_labels))

            # If the confusion matrix is smaller, pad it to match the largest size
            if cm.shape[0] < max_num_labels:
                padded_cm = np.zeros((max_num_labels, max_num_labels))
                padded_cm[:cm.shape[0], :cm.shape[1]] = cm
                confusion_matrices.append(padded_cm)
            else:
                confusion_matrices.append(cm)

    if confusion_matrices:
        avg_cm = np.mean(confusion_matrices, axis=0)
        return avg_cm
    else:
        return None

########################## LOS/NLOS CLASSIFICATION #############################3


# Paths to the predefined images folder
LOS_PATH = "images_LoS"

# Define the percentage values
percentage_values_los = np.linspace(0.001, 1, 20) * 100  # 20 percentage values

from sklearn.metrics import f1_score
import seaborn as sns

# Function to compute confusion matrix, F1-score and plot it with dark mode style
def plot_confusion_matrix_from_csv(csv_file_path, title, save_path, light_mode=True):
    # Load CSV file
    data = pd.read_csv(csv_file_path)
    
    # Extract ground truth and predictions
    y_true = data['Target']
    y_pred = data['Top-1 Prediction']
    
    # Compute confusion matrix
    cm = confusion_matrix(y_true, y_pred)
    
    # Compute F1-score
    f1 = f1_score(y_true, y_pred, average='macro')  # Macro-average F1-score

    # Set styling based on light or dark mode
    if light_mode:
        plt.style.use('default')  # Light mode styling
        text_color = 'black'
        cmap = 'Blues'  # Light-mode-friendly colormap
    else:
        plt.style.use('dark_background')  # Dark mode styling
        text_color = 'white'
        cmap = 'magma'  # Dark-mode-friendly colormap
    
    plt.figure(figsize=(5, 5))

    # Plot the confusion matrix with the chosen colormap
    sns.heatmap(cm, annot=True, fmt="d", cmap=cmap, cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')

    # Add F1-score to the title
    plt.title(f"{title}\n(F1 Score: {f1:.3f})", color=text_color, fontsize=14)

    # Customize tick labels for light/dark mode
    plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)
    plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color=text_color, fontsize=10)

    plt.ylabel('True label', color=text_color, fontsize=12)
    plt.xlabel('Predicted label', color=text_color, fontsize=12)
    plt.tight_layout()

    # Save the plot as an image
    plt.savefig(save_path, transparent=True)  # Use transparent to blend with the website
    plt.close()

    # Return the saved image
    return Image.open(save_path)

# Function to load confusion matrix based on percentage and input_type
def display_confusion_matrices_los(percentage):
    #percentage = percentage_values_los[percentage_idx]
    
    # Construct folder names
    raw_folder = os.path.join(LOS_PATH, f"raw_{percentage/100:.3f}_los_noTraining")
    embeddings_folder = os.path.join(LOS_PATH, f"embedding_{percentage/100:.3f}_los_noTraining")
    
    # Process raw confusion matrix
    raw_csv_file = os.path.join(raw_folder, f"test_predictions_raw_{percentage/100:.3f}_los.csv")
    raw_cm_img_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
    raw_img = plot_confusion_matrix_from_csv(raw_csv_file, 
                                             f"Raw Confusion Matrix ({percentage:.1f}% data)", 
                                             raw_cm_img_path)

    # Process embeddings confusion matrix
    embeddings_csv_file = os.path.join(embeddings_folder, f"test_predictions_embedding_{percentage/100:.3f}_los.csv")
    embeddings_cm_img_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
    embeddings_img = plot_confusion_matrix_from_csv(embeddings_csv_file, 
                                                    f"Embeddings Confusion Matrix ({percentage:.1f}% data)", 
                                                    embeddings_cm_img_path)

    return raw_img, embeddings_img

# Main function to handle user choice
def handle_user_choice(choice, percentage=None, uploaded_file=None):
    if choice == "Use Default Dataset":
        raw_img, embeddings_img = display_confusion_matrices_los(percentage)
        return raw_img, embeddings_img, ""  # Return empty string for console output
    elif choice == "Upload Dataset":
        if uploaded_file is not None:
            raw_img, embeddings_img, console_output = process_hdf5_file(uploaded_file, percentage)
            return raw_img, embeddings_img, console_output
        else:
            return "Please upload a dataset", "Please upload a dataset", ""  # Return empty string for console output
    else:
        return "Invalid choice", "Invalid choice", ""  # Return empty string for console output

# Custom class to capture print output
class PrintCapture(io.StringIO):
    def __init__(self):
        super().__init__()
        self.output = []

    def write(self, txt):
        self.output.append(txt)
        super().write(txt)

    def get_output(self):
        return ''.join(self.output)

# Function to load and display predefined images based on user selection
def display_predefined_images(percentage):
    #percentage = percentage_values_los[percentage_idx]
    raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
    embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
    
    # Check if the images exist
    if os.path.exists(raw_image_path):
        raw_image = Image.open(raw_image_path)
    else:
        raw_image = create_random_image()  # Use a fallback random image
    
    if os.path.exists(embeddings_image_path):
        embeddings_image = Image.open(embeddings_image_path)
    else:
        embeddings_image = create_random_image()  # Use a fallback random image

    return raw_image, embeddings_image

def los_nlos_classification(file, percentage):
    if file is not None:
        raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage)
        return raw_cm_image, emb_cm_image, console_output  # Returning all three: two images and console output
    else:
        raw_image, embeddings_image = display_predefined_images(percentage)
        return raw_image, embeddings_image, ""  # Return an empty string for console output when no file is uploaded

# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
    random_image = np.random.rand(*size, 3) * 255
    return Image.fromarray(random_image.astype('uint8'))

import importlib.util

# Function to dynamically load a Python module from a given file path
def load_module_from_path(module_name, file_path):
    spec = importlib.util.spec_from_file_location(module_name, file_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)
    return module

# Function to split dataset into training and test sets based on user selection
def split_dataset(channels, labels, percentage):
    #percentage = percentage_values_los[percentage_idx] / 100
    num_samples = channels.shape[0]
    train_size = int(num_samples * percentage/100)
    print(f'Number of Training Samples: {train_size}')
    
    indices = np.arange(num_samples)
    np.random.shuffle(indices)
    
    train_idx, test_idx = indices[:train_size], indices[train_size:]
    
    train_data, test_data = channels[train_idx], channels[test_idx]
    train_labels, test_labels = labels[train_idx], labels[test_idx]
    
    return train_data, test_data, train_labels, test_labels

# Function to calculate Euclidean distance between a point and a centroid
def euclidean_distance(x, centroid):
    return np.linalg.norm(x - centroid)

import torch

def classify_based_on_distance(train_data, train_labels, test_data):
    # Compute the centroids for the two classes
    centroid_0 = train_data[train_labels == 0].mean(dim=0)  # Use torch.mean
    centroid_1 = train_data[train_labels == 1].mean(dim=0)  # Use torch.mean
    
    predictions = []
    for test_point in test_data:
        # Compute Euclidean distance between the test point and each centroid
        dist_0 = euclidean_distance(test_point, centroid_0)
        dist_1 = euclidean_distance(test_point, centroid_1)
        predictions.append(0 if dist_0 < dist_1 else 1)
    
    return torch.tensor(predictions)  # Return predictions as a PyTorch tensor

def plot_confusion_matrix(y_true, y_pred, title):
    cm = confusion_matrix(y_true, y_pred)
    
    # Calculate F1 Score
    f1 = f1_score(y_true, y_pred, average='weighted')

    plt.style.use('dark_background')
    plt.figure(figsize=(5, 5))
    
    # Plot the confusion matrix with a dark-mode compatible colormap
    sns.heatmap(cm, annot=True, fmt="d", cmap="magma", cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
    
    # Add F1-score to the title
    plt.title(f"{title}\n(F1 Score: {f1:.3f})", color="white", fontsize=14)
    
    # Customize tick labels for dark mode
    plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
    plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
    
    plt.ylabel('True label', color="white", fontsize=12)
    plt.xlabel('Predicted label', color="white", fontsize=12)
    plt.tight_layout()
    
    # Save the plot as an image
    plt.savefig(f"{title}.png", transparent=True)  # Use transparent to blend with the dark mode website
    plt.close()
    
    # Return the saved image
    return Image.open(f"{title}.png")


def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
    N = output_emb.shape[0]
    indices = torch.randperm(N) 
    test_split_index = int(N * 0.20)
    test_indices = indices[:test_split_index]
    remaining_indices = indices[test_split_index:]
    train_split_index = int(len(remaining_indices) * train_percentage / 100)
    print(f'Training Size: {train_split_index} out of remaining {len(remaining_indices)}')
    
    train_indices = remaining_indices[:train_split_index]

    train_emb = output_emb[train_indices]
    test_emb = output_emb[test_indices]
    
    train_raw = output_raw[train_indices]
    test_raw = output_raw[test_indices]

    train_labels = labels[train_indices]
    test_labels = labels[test_indices]

    return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels

# Store the original working directory when the app starts
original_dir = os.getcwd()

def process_hdf5_file(uploaded_file, percentage):
    capture = PrintCapture()
    sys.stdout = capture  # Redirect print statements to capture
    
    try:
        model_repo_url = "https://huggingface.co/wi-lab/lwm"
        model_repo_dir = "./LWM"

        # Step 1: Clone the repository if not already done
        if not os.path.exists(model_repo_dir):
            print(f"Cloning model repository from {model_repo_url}...")
            subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)

        # Step 2: Verify the repository was cloned and change the working directory
        repo_work_dir = os.path.join(original_dir, model_repo_dir)
        if os.path.exists(repo_work_dir):
            os.chdir(repo_work_dir)  # Change the working directory only once
            print(f"Changed working directory to {os.getcwd()}")
            #print(f"Directory content: {os.listdir(os.getcwd())}")  # Debugging: Check repo content
        else:
            print(f"Directory {repo_work_dir} does not exist.")
            return
            
        # Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py
        lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
        input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
        inference_path = os.path.join(os.getcwd(), 'inference.py')

        # Load lwm_model
        lwm_model = load_module_from_path("lwm_model", lwm_model_path)

        # Load input_preprocess
        input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)

        # Load inference
        inference = load_module_from_path("inference", inference_path)

        # Step 4: Load the model from lwm_model module
        device = 'cuda' if torch.cuda.is_available() else 'cpu'
        print(f"Loading the LWM model on {device}...")
        model = lwm_model.lwm.from_pretrained(device=device).float()

        # Step 5: Load the HDF5 file and extract the channels and labels
        with h5py.File(uploaded_file.name, 'r') as f:
            channels = np.array(f['channels']).astype(np.complex64)
            labels = np.array(f['labels']).astype(np.int32)  
        print(f"Loaded dataset with {channels.shape[0]} samples.")

        # Step 7: Tokenize the data using the tokenizer from input_preprocess
        preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)

        # Step 7: Perform inference using the functions from inference.py
        output_emb = inference.lwm_inference(preprocessed_chs, 'cls_emb', model, device)
        output_raw = inference.create_raw_dataset(preprocessed_chs, device)

        print(f"Output Embeddings Shape: {output_emb.shape}")
        print(f"Output Raw Shape: {output_raw.shape}")

        print(f'percentage_value: {percentage}')
        train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1),
                                                                                                                             output_raw.view(len(output_raw),-1),
                                                                                                                             labels,
                                                                                                                             percentage)
        
        # Step 8: Perform classification using the Euclidean distance for both raw and embeddings
        print(f'train_data_emb: {train_data_emb.shape}')
        print(f'train_labels: {train_labels.shape}')
        print(f'test_data_emb: {test_data_emb.shape}')
        pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
        pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
        
        # Step 9: Generate confusion matrices for both raw and embeddings
        raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
        emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")

        return raw_cm_image, emb_cm_image, capture.get_output()

    except Exception as e:
        return str(e), str(e), capture.get_output()

    finally:
        # Always return to the original working directory after processing
        os.chdir(original_dir)
        sys.stdout = sys.__stdout__  # Reset print statements

######################## Define the Gradio interface ###############################
with gr.Blocks(css="""
    .slider-container {
        display: inline-block;
        margin-right: 50px;
        text-align: center;
    }

    .explanation-box {
        font-size: 16px;
        font-style: italic;
        color: #4a4a4a;
        padding: 15px;
        background-color: #f0f0f0;
        border-radius: 10px;
        margin-bottom: 20px;
    }

    .bold-highlight {
        font-weight: bold;
        color: #2c3e50;
        font-size: 18px;
        text-align: center;
        margin-bottom: 20px;
    }

    #console-output {
        background-color: #ffffff;  /* Light background for light mode */
        color: #000000;  /* Dark text color for contrast */
        padding: 10px;
        border-radius: 5px;
    }

    .plot-title {
        font-weight: bold;
        color: #2c3e50;
    }
""") as demo:

    # Contact Section
    gr.Markdown("""
        <div style="text-align: center;">
            <a target="_blank" href="https://www.wi-lab.net">
                <img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;">
            </a>
            <a target="_blank" href="mailto:alikhani@asu.edu" style="margin-left: 10px;">
                <img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail" alt="Email">
            </a>
        </div>
    """)
    
    gr.Markdown("""
    <div class="bold-highlight">
        πŸš€ Explore the pre-trained <b>LWM Model<b> here: 
        <a target="_blank" href="https://huggingface.co/wi-lab/lwm">https://huggingface.co/wi-lab/lwm</a>
    </div>
    """)

    # Tab for Beam Prediction Task
    with gr.Tab("Beam Prediction Task"):
        #gr.Markdown("### Beam Prediction Task")

        # Explanation section with creative spacing and minimal design
        gr.Markdown("""
            <div style="background-color: #f0f0f0; padding: 15px; border-radius: 10px; color: #333;">
              <h3 style="color: #0056b3;">πŸ“‘ <b>Beam Prediction Task</b></h3>
              <ul style="padding-left: 20px;">
                <li><b>🎯 Goal</b>: Predict the strongest <b>mmWave beam</b> from a predefined codebook using Sub-6 GHz channels.</li>
                <li><b>βš™οΈ Adjust Settings</b>: Use the sliders to control the training data percentage and task complexity (beam count) to explore model performance.</li>
                <li><b>🧠 Inferences</b>:
                  <ul>
                    <li>πŸ” First, the LWM model extracts features.</li>
                    <li>πŸ€– Then, the downstream residual 1D-CNN model (500K parameters) makes beam predictions.</li>
                  </ul>
                </li>
                <li><b>πŸ—ΊοΈ Dataset</b>: A combination of six scenarios from the DeepMIMO dataset (excluded from LWM pre-training) highlights the model's strong generalization abilities.</li>
              </ul>
            </div>
        """)

        with gr.Row():
            with gr.Column():
                data_percentage_slider = gr.Slider(label="Data Percentage for Training", minimum=10, maximum=100, step=10, value=10)
                task_complexity_dropdown = gr.Dropdown(label="Task Complexity (Number of Beams)", choices=[16, 32, 64, 128, 256], value=16)

        with gr.Row():
            raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=500)
            embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=500)

        # Update the confusion matrices whenever sliders change
        data_percentage_slider.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
        task_complexity_dropdown.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp])

        # Add a conclusion section at the bottom
        gr.Markdown("""
            <div class="explanation-box">
                The LWM embeddings demonstrate remarkable generalization capabilities, enabling impressive performance even with minimal training samples. This highlights their ability to effectively handle diverse tasks with limited data.
            </div>
        """)

    # Separate Tab for LoS/NLoS Classification Task
    with gr.Tab("LoS/NLoS Classification Task"):
        #gr.Markdown("### LoS/NLoS Classification Task")

        # Explanation section with creative spacing
        gr.Markdown("""
            <div style="background-color: #f0f0f0; padding: 15px; border-radius: 10px; color: #333;">
              <h3 style="color: #0056b3;">πŸ” <b>LoS/NLoS Classification Task</b></h3>
              <ul style="padding-left: 20px;">
                <li><b>🎯 Goal</b>: Classify whether a channel is <b>LoS</b> (Line-of-Sight) or <b>NLoS</b> (Non-Line-of-Sight).</li>
                <li><b>πŸ“‚ Dataset</b>: Use the default dataset (a combination of six scenarios from the DeepMIMO dataset) or upload your own dataset in <b>h5py</b> format.</li>
                <li><b>πŸ’‘ Custom Dataset Requirements:</b>
                  <ul>
                    <li>πŸ› οΈ <b>channels</b> array: Shape (N,32,32)</li>
                    <li>🏷️ <b>labels</b> array: Binary LoS/NLoS values (1/0)</li>
                  </ul>
                </li>
                <li><b>πŸ”— Tip</b>: You can find guidance on how to structure your dataset in the provided model repository.</li>
                <li><b>πŸ’Ό No Downstream Model</b>: Instead of a complex downstream model, we classify each sample based on its distance to the centroid of training samples from each class (LoS/NLoS).</li>
              </ul>
            </div>
        """)

        # Radio button for user choice: predefined data or upload dataset
        choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Default Dataset")
        
        percentage_slider_los = gr.Slider(minimum=float(percentage_values_los[0]), 
                                  maximum=float(percentage_values_los[-1]), 
                                  step=float(percentage_values_los[1] - percentage_values_los[0]), 
                                  value=float(percentage_values_los[0]), 
                                  label="Percentage of Data for Training")

        # File uploader for dataset (only visible if user chooses to upload a dataset)
        file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"], visible=False)

        # Confusion matrices display
        with gr.Row():
            raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
            embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300)
            output_textbox = gr.Textbox(label="Console Output", lines=10, elem_id="console-output")

        # Update the file uploader visibility based on user choice
        def toggle_file_input(choice):
            return gr.update(visible=(choice == "Upload Dataset"))
        
        choice_radio.change(fn=toggle_file_input, inputs=[choice_radio], outputs=file_input)

        # When user makes a choice, update the display
        choice_radio.change(fn=handle_user_choice, inputs=[choice_radio, percentage_slider_los, file_input], 
                            outputs=[raw_img_los, embeddings_img_los, output_textbox])

        # When percentage slider changes (for predefined data)
        percentage_slider_los.change(fn=handle_user_choice, inputs=[choice_radio, percentage_slider_los, file_input], 
                                       outputs=[raw_img_los, embeddings_img_los, output_textbox])

        # Add a conclusion section at the bottom
        gr.Markdown("""
            <div class="explanation-box">
                Despite their compact size (1/32 of the raw channels), LWM CLS embeddings capture rich, holistic information about the channels. This makes them exceptionally well-suited for tasks like LoS/NLoS classification, especially when working with very limited data.
            </div>
        """)

# Launch the app
if __name__ == "__main__":
    demo.launch()