BigLAM: BigScience Libraries, Archives and Museums

non-profit

AI & ML interests

🤗 Hugging Face x 🌸 BigScience initiative to create open source community resources for LAMs.

Recent Activity

biglam's activity

davanstrien 
posted an update 6 days ago
view post
Post
1505
I've created a v1 dataset ( davanstrien/reasoning-required) and model ( davanstrien/ModernBERT-based-Reasoning-Required) to help curate "wild text" data for generating reasoning examples beyond the usual code/math/science domains.

- I developed a "Reasoning Required" dataset with a 0-4 scoring system for reasoning complexity
- I used educational content from HuggingFaceFW/fineweb-edu, adding annotations for domains, reasoning types, and example questions

My approach enables a more efficient workflow: filter text with small models first, then use LLMs only on high-value content.

This significantly reduces computation costs while expanding reasoning dataset domain coverage.
stefan-it 
posted an update 17 days ago
view post
Post
2204
Wohoo 🥳 I have finished my 2025 GPU workstation build and I am very excited to train new awesome open source models on it.

I built my last GPU workstation 5 years ago featuring an AMD Ryzen 5900X, 64GB of G.SKILL Trident Z RGB on an ASRock X570 Taichi cooled by an Alphacool Eisbär 420. GPU was a Zotac RTX 3090 AMP Extreme. Unfortunately, I was never satisfied with the case - some Fractal Define 7, as it is definitely too small, airflow is not optimal as I had to open the front door all the time and it also arrived with a partly damaged side panel.

For my new build, I've used the following components: an outstanding new AMD Ryzen 9950X3D with 64GB of Corsair Dominator Titanium (what a name). As a huge Noctua fan - warm greetings to my Austrian neighbors - I am using the brand new Noctua NH-D15 G2 on an ASRock X870E Taichi in an amazing Lian Li LANCOOL III chassis. One joke that only NVIDIA Blackwell users will understand: you definitely need a tempered glass panel to check if your GPU cables/connectors start melting 😂 And the best is yet to come: I returned my previously bought Zotac RTX 5090 Solid to the eBay seller (because of... missing ROPs, only NVIDIA Blackwell users will again understand) and bought a Zotac 5090 AMP Extreme INFINITY (yes, the long name indicates that this is the flagship model from Zotac) from a more trustworthy source (NBB in Germany).

I am so happy to start training and fine-tuning new open source models - stay tuned!!!
  • 2 replies
·
louisbrulenaudet 
posted an update 23 days ago
view post
Post
902
I’ve just released logfire-callback on PyPI, designed to facilitate monitoring of Hugging Face Transformer training loops using Pydantic Logfire 🤗

The callback will automatically log training start with configuration parameters, periodic metrics and training completion ⏱️

Install the package using pip:
pip install logfire-callback

First, ensure you have a Logfire API token and set it as an environment variable:
export LOGFIRE_TOKEN=your_logfire_token

Then use the callback in your training code:
from transformers import Trainer, TrainingArguments
from logfire_callback import LogfireCallback

# Initialize your model, dataset, etc.

training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    # ... other training arguments
)

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=train_dataset,
    callbacks=[LogfireCallback()]  # Add the Logfire callback here
)

trainer.train()

If you have any feedback, please reach out at @louisbrulenaudet
albertvillanova 
posted an update about 1 month ago
view post
Post
3907
🚀 New smolagents update: Safer Local Python Execution! 🦾🐍

With the latest release, we've added security checks to the local Python interpreter: every evaluation is now analyzed for dangerous builtins, modules, and functions. 🔒

Here's why this matters & what you need to know! 🧵👇

1️⃣ Why is local execution risky? ⚠️
AI agents that run arbitrary Python code can unintentionally (or maliciously) access system files, run unsafe commands, or exfiltrate data.

2️⃣ New Safety Layer in smolagents 🛡️
We now inspect every return value during execution:
✅ Allowed: Safe built-in types (e.g., numbers, strings, lists)
⛔ Blocked: Dangerous functions/modules (e.g., os.system, subprocess, exec, shutil)

3️⃣ Immediate Benefits 💡
- Prevent agents from accessing unsafe builtins
- Block unauthorized file or network access
- Reduce accidental security vulnerabilities

4️⃣ Security Disclaimer ⚠️
🚨 Despite these improvements, local Python execution is NEVER 100% safe. 🚨
If you need true isolation, use a remote sandboxed executor like Docker or E2B.

5️⃣ The Best Practice: Use Sandboxed Execution 🔐
For production-grade AI agents, we strongly recommend running code in a Docker or E2B sandbox to ensure complete isolation.

6️⃣ Upgrade Now & Stay Safe! 🚀
Check out the latest smolagents release and start building safer AI agents today.

🔗 https://github.com/huggingface/smolagents

What security measures do you take when running AI-generated code? Let’s discuss! 👇

#AI #smolagents #Python #Security
  • 2 replies
·
albertvillanova 
posted an update about 1 month ago
view post
Post
3891
🚀 Big news for AI agents! With the latest release of smolagents, you can now securely execute Python code in sandboxed Docker or E2B environments. 🦾🔒

Here's why this is a game-changer for agent-based systems: 🧵👇

1️⃣ Security First 🔐
Running AI agents in unrestricted Python environments is risky! With sandboxing, your agents are isolated, preventing unintended file access, network abuse, or system modifications.

2️⃣ Deterministic & Reproducible Runs 📦
By running agents in containerized environments, you ensure that every execution happens in a controlled and predictable setting—no more environment mismatches or dependency issues!

3️⃣ Resource Control & Limits 🚦
Docker and E2B allow you to enforce CPU, memory, and execution time limits, so rogue or inefficient agents don’t spiral out of control.

4️⃣ Safer Code Execution in Production 🏭
Deploy AI agents confidently, knowing that any generated code runs in an ephemeral, isolated environment, protecting your host machine and infrastructure.

5️⃣ Easy to Integrate 🛠️
With smolagents, you can simply configure your agent to use Docker or E2B as its execution backend—no need for complex security setups!

6️⃣ Perfect for Autonomous AI Agents 🤖
If your AI agents generate and execute code dynamically, this is a must-have to avoid security pitfalls while enabling advanced automation.

⚡ Get started now: https://github.com/huggingface/smolagents

What will you build with smolagents? Let us know! 🚀💡
stefan-it 
posted an update about 1 month ago
view post
Post
956
🇹🇷 😍 I'm very happy to finally announce my new Turkish LM called "BERT5urk":

stefan-it/bert5urk

It is a 1.42B T5-based model, trained with UL2 pretraining objective on the Turkish part of the awesome HuggingFaceFW/fineweb-2 dataset.

Feel free to check it out!
  • 1 reply
·
davanstrien 
posted an update about 2 months ago
view post
Post
2919
📊 Introducing "Hugging Face Dataset Spotlight" 📊

I'm excited to share the first episode of our AI-generated podcast series focusing on nice datasets from the Hugging Face Hub!

This first episode explores mathematical reasoning datasets:

- SynthLabsAI/Big-Math-RL-Verified: Over 250,000 rigorously verified problems spanning multiple difficulty levels and mathematical domains
- open-r1/OpenR1-Math-220k: 220,000 math problems with multiple reasoning traces, verified for accuracy using Math Verify and Llama-3.3-70B models.
- facebook/natural_reasoning: 1.1 million general reasoning questions carefully deduplicated and decontaminated from existing benchmarks, showing superior scaling effects when training models like Llama3.1-8B-Instruct.

Plus a bonus segment on bespokelabs/bespoke-manim!

https://www.youtube.com/watch?v=-TgmRq45tW4
stefan-it 
posted an update about 2 months ago
view post
Post
3158
After running some 3DMark and FurMark benchmarks on Windows to make sure that my new 5090 is not causing melting cables [1] and some nice shots with a thermal camera (I don't think that's too much), running some fine-tuning experiments with my favorite Flair & Transformers libraries are very easy to perform.

Important steps:

Good idea is to start with a fresh Ubuntu 24.04 installation with latest CUDA 12.8 and the open NVIDIA driver - follow more advices from [2]:

sudo apt -y install cuda-toolkit-12-8 nvidia-open

I tried update from an existing Ubuntu installation with an older CUDA and driver version and it resulted in a non-startable system.

If you are using PyTorch 2.6 with built CUDA 12.6 it will result in:

NVIDIA Graphics Device with CUDA capability sm_120 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_50 sm_60 sm_70 sm_75 sm_80 sm_86 sm_90.

But no worries! For PyTorch you need just to use a nightly 2.7 version that was built with CUDA 12.8. This can easily done via:

pip install --pre torch --index-url https://download.pytorch.org/whl/nightly/cu128

After that the latest Flair version can be installed and fine-tuning will work!

References:

[1]: https://www.reddit.com/r/nvidia/comments/1inpox7/rtx_50_series_12vhpwr_megathread/
[2]: https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=24.04&target_type=deb_network
  • 1 reply
·
davanstrien 
posted an update about 2 months ago
view post
Post
3663
Quick POC: Turn a Hugging Face dataset card into a short podcast introducing the dataset using all open models.

I think I'm the only weirdo who would enjoy listening to something like this though 😅

Here is an example for eth-nlped/stepverify
  • 2 replies
·
stefan-it 
posted an update about 2 months ago
view post
Post
5094
She arrived 😍

[Expect more models soon...]
  • 2 replies
·
davanstrien 
posted an update about 2 months ago
view post
Post
2630
Hacked together a way to log trl GRPO training completions to a 🤗 dataset repo. This allows you to:

- Track rewards from multiple reward functions
- Treat the completion and rewards from training as a "proper" dataset and do EDA
- Share results for open science

The implementation is super hacky, but I'm curious if people would find this useful.

To push completions to the Hub, you just need two extra parameters:

log_completions=True
log_completions_hub_repo='your-username/repo-name'

Example dataset: davanstrien/test-logs
Colab: https://colab.research.google.com/drive/1wzBFPVthRYYTp-mEYlznLg_e_0Za1M3g

alielfilali01 
posted an update about 2 months ago
view post
Post
948
🚨 Arabic LLM Evaluation 🚨

Few models join the ranking of https://huggingface.co/spaces/inceptionai/AraGen-Leaderboard Today.

The new MistralAI model, Saba, is quite impressive, Top10 ! Well done @arthurmensch and team.

Sadly Mistral did not follow its strategy about public weights this time, we hope this changes soon and we get the model with a permissive license.

We added other Mistral models and apparently, we have been sleeping on mistralai/Mistral-Large-Instruct-2411 !

Another impressive model that joined the ranking today is ALLaM-AI/ALLaM-7B-Instruct-preview. After a long wait finally ALLaM is here and it is IMPRESSIVE given its size !

ALLaM is ranked on OALL/Open-Arabic-LLM-Leaderboard as well.
louisbrulenaudet 
posted an update about 2 months ago
view post
Post
3275
I am pleased to introduce my first project built upon Hugging Face’s smolagents framework, integrated with Alpaca for financial market analysis automation 🦙🤗

The project implements technical indicators such as the Relative Strength Index (RSI) and Bollinger Bands to provide momentum and volatility analysis. Market data is retrieved through the Alpaca API, enabling access to historical price information across various timeframes.

AI-powered insights are generated using Hugging Face’s inference API, facilitating the analysis of market trends through natural language processing with DuckDuckGo search integration for real-time sentiment analysis based on financial news 🦆

Link to the GitHub project: https://github.com/louisbrulenaudet/agentic-market-tool

davanstrien 
posted an update about 2 months ago