Transformers documentation

通用工具

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.47.1).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

通用工具

此页面列出了在utils.py文件中找到的所有Transformers通用实用函数。

其中大多数仅在您研究库中的通用代码时才有用。

Enums和namedtuples(命名元组)

class transformers.utils.ExplicitEnum

< >

( value names = None module = None qualname = None type = None start = 1 )

Enum with more explicit error message for missing values.

class transformers.utils.PaddingStrategy

< >

( value names = None module = None qualname = None type = None start = 1 )

Possible values for the padding argument in PreTrainedTokenizerBase.call(). Useful for tab-completion in an IDE.

class transformers.TensorType

< >

( value names = None module = None qualname = None type = None start = 1 )

Possible values for the return_tensors argument in PreTrainedTokenizerBase.call(). Useful for tab-completion in an IDE.

特殊的装饰函数

transformers.add_start_docstrings

< >

( *docstr )

transformers.utils.add_start_docstrings_to_model_forward

< >

( *docstr )

transformers.add_end_docstrings

< >

( *docstr )

transformers.utils.add_code_sample_docstrings

< >

( *docstr processor_class = None checkpoint = None output_type = None config_class = None mask = '[MASK]' qa_target_start_index = 14 qa_target_end_index = 15 model_cls = None modality = None expected_output = None expected_loss = None real_checkpoint = None revision = None )

transformers.utils.replace_return_docstrings

< >

( output_type = None config_class = None )

特殊的属性

class transformers.utils.cached_property

< >

( fget = None fset = None fdel = None doc = None )

Descriptor that mimics @property but caches output in member variable.

From tensorflow_datasets

Built-in in functools from Python 3.8.

其他实用程序

class transformers.utils._LazyModule

< >

( name: str module_file: str import_structure: typing.Dict[typing.FrozenSet[str], typing.Dict[str, typing.Set[str]]] module_spec: ModuleSpec = None extra_objects: typing.Dict[str, object] = None )

Module class that surfaces all objects but only performs associated imports when the objects are requested.

< > Update on GitHub