基准测试
小提示:Hugging Face的基准测试工具已经不再更新,建议使用外部基准测试库来衡量Transformer模 型的速度和内存复杂度。
让我们来看看如何对🤗 Transformers模型进行基准测试,以及进行测试的推荐策略和已有的基准测试结果。
如果您需要更详细的回答,可以在这里找到更多关于基准测试的内容。
如何对🤗 Transformers模型进行基准测试
使用PyTorchBenchmark
和TensorFlowBenchmark
类可以灵活地对🤗 Transformers模型进行基准测试。这些基准测试类可以衡量模型在推理和训练过程中所需的峰值内存和时间。
这里的推理指的是一次前向传播(forward pass),而训练则指一次前向传播和反向传播(backward pass)。
基准测试类 PyTorchBenchmark
和 TensorFlowBenchmark
需要分别传入 PyTorchBenchmarkArguments
和 TensorFlowBenchmarkArguments
类型的对象来进行实例化。这些类是数据类型,包含了所有相关的配置参数,用于其对应的基准测试类。
在下面的示例中,我们展示了如何对类型为 bert-base-cased 的BERT模型进行基准测试:
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
>>> args = PyTorchBenchmarkArguments(models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512])
>>> benchmark = PyTorchBenchmark(args)
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
>>> args = TensorFlowBenchmarkArguments(
... models=["google-bert/bert-base-uncased"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> benchmark = TensorFlowBenchmark(args)
在这里,基准测试的参数数据类接受了三个主要的参数,即 models
、batch_sizes
和sequence_lengths
。其中,models
是必需的参数,它期望一个来自模型库的模型标识符列表。batch_sizes
和 sequence_lengths
是列表类型的参数,定义了进行基准测试时 input_ids
的批量大小和序列长度。
这些是基准测试数据类中可以配置的一些主要参数。除此之外,基准测试数据类中还可以配置很多其他参数。如需要查看更详细的配置参数,可以直接查看以下文件:
src/transformers/benchmark/benchmark_args_utils.py
src/transformers/benchmark/benchmark_args.py
(针对 PyTorch)src/transformers/benchmark/benchmark_args_tf.py
(针对 TensorFlow)
另外,您还可以通过在根目录下运行以下命令,查看针对 PyTorch 和 TensorFlow 的所有可配置参数的描述列表:
bash python examples/pytorch/benchmarking/run_benchmark.py --help
这些命令将列出所有可以配置的参数,它们可以帮助您更加灵活地进行基准测试。
以下代码通过PyTorchBenchmarkArguments
设置模型批处理大小和序列长度,然后调用benchmark.run()
执行基准测试。
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 0.006
google-bert/bert-base-uncased 8 32 0.006
google-bert/bert-base-uncased 8 128 0.018
google-bert/bert-base-uncased 8 512 0.088
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 1227
google-bert/bert-base-uncased 8 32 1281
google-bert/bert-base-uncased 8 128 1307
google-bert/bert-base-uncased 8 512 1539
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: PyTorch
- use_torchscript: False
- framework_version: 1.4.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 08:58:43.371351
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
python examples/tensorflow/benchmarking/run_benchmark_tf.py --help
接下来,只需要调用 benchmark.run()
就能轻松运行已经实例化的基准测试对象。
>>> results = benchmark.run()
>>> print(results)
>>> results = benchmark.run()
>>> print(results)
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 0.005
google-bert/bert-base-uncased 8 32 0.008
google-bert/bert-base-uncased 8 128 0.022
google-bert/bert-base-uncased 8 512 0.105
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
google-bert/bert-base-uncased 8 8 1330
google-bert/bert-base-uncased 8 32 1330
google-bert/bert-base-uncased 8 128 1330
google-bert/bert-base-uncased 8 512 1770
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: Tensorflow
- use_xla: False
- framework_version: 2.2.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:26:35.617317
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
在一般情况下,基准测试会测量推理(inference)的时间和所需内存。在上面的示例输出中,前两部分显示了与推理时间和推理内存对应的结果。与此同时,关于计算环境的所有相关信息(例如 GPU 类型、系统、库版本等)会在第三部分的环境信息中打印出来。你可以通过在 PyTorchBenchmarkArguments
和 TensorFlowBenchmarkArguments
中添加 save_to_csv=True
参数,将这些信息保存到一个 .csv 文件中。在这种情况下,每一部分的信息会分别保存在不同的 .csv 文件中。每个 .csv 文件的路径也可以通过参数数据类进行定义。
您可以选择不通过预训练模型的模型标识符(如 google-bert/bert-base-uncased
)进行基准测试,而是对任何可用模型类的任意配置进行基准测试。在这种情况下,我们必须将一系列配置与基准测试参数一起传入,方法如下:
>>> from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments, BertConfig
>>> args = PyTorchBenchmarkArguments(
... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> config_base = BertConfig()
>>> config_384_hid = BertConfig(hidden_size=384)
>>> config_6_lay = BertConfig(num_hidden_layers=6)
>>> benchmark = PyTorchBenchmark(args, configs=[config_base, config_384_hid, config_6_lay])
>>> benchmark.run()
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base 8 128 0.006
bert-base 8 512 0.006
bert-base 8 128 0.018
bert-base 8 512 0.088
bert-384-hid 8 8 0.006
bert-384-hid 8 32 0.006
bert-384-hid 8 128 0.011
bert-384-hid 8 512 0.054
bert-6-lay 8 8 0.003
bert-6-lay 8 32 0.004
bert-6-lay 8 128 0.009
bert-6-lay 8 512 0.044
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base 8 8 1277
bert-base 8 32 1281
bert-base 8 128 1307
bert-base 8 512 1539
bert-384-hid 8 8 1005
bert-384-hid 8 32 1027
bert-384-hid 8 128 1035
bert-384-hid 8 512 1255
bert-6-lay 8 8 1097
bert-6-lay 8 32 1101
bert-6-lay 8 128 1127
bert-6-lay 8 512 1359
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: PyTorch
- use_torchscript: False
- framework_version: 1.4.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:35:25.143267
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
>>> from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments, BertConfig
>>> args = TensorFlowBenchmarkArguments(
... models=["bert-base", "bert-384-hid", "bert-6-lay"], batch_sizes=[8], sequence_lengths=[8, 32, 128, 512]
... )
>>> config_base = BertConfig()
>>> config_384_hid = BertConfig(hidden_size=384)
>>> config_6_lay = BertConfig(num_hidden_layers=6)
>>> benchmark = TensorFlowBenchmark(args, configs=[config_base, config_384_hid, config_6_lay])
>>> benchmark.run()
==================== INFERENCE - SPEED - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Time in s
--------------------------------------------------------------------------------
bert-base 8 8 0.005
bert-base 8 32 0.008
bert-base 8 128 0.022
bert-base 8 512 0.106
bert-384-hid 8 8 0.005
bert-384-hid 8 32 0.007
bert-384-hid 8 128 0.018
bert-384-hid 8 512 0.064
bert-6-lay 8 8 0.002
bert-6-lay 8 32 0.003
bert-6-lay 8 128 0.0011
bert-6-lay 8 512 0.074
--------------------------------------------------------------------------------
==================== INFERENCE - MEMORY - RESULT ====================
--------------------------------------------------------------------------------
Model Name Batch Size Seq Length Memory in MB
--------------------------------------------------------------------------------
bert-base 8 8 1330
bert-base 8 32 1330
bert-base 8 128 1330
bert-base 8 512 1770
bert-384-hid 8 8 1330
bert-384-hid 8 32 1330
bert-384-hid 8 128 1330
bert-384-hid 8 512 1540
bert-6-lay 8 8 1330
bert-6-lay 8 32 1330
bert-6-lay 8 128 1330
bert-6-lay 8 512 1540
--------------------------------------------------------------------------------
==================== ENVIRONMENT INFORMATION ====================
- transformers_version: 2.11.0
- framework: Tensorflow
- use_xla: False
- framework_version: 2.2.0
- python_version: 3.6.10
- system: Linux
- cpu: x86_64
- architecture: 64bit
- date: 2020-06-29
- time: 09:38:15.487125
- fp16: False
- use_multiprocessing: True
- only_pretrain_model: False
- cpu_ram_mb: 32088
- use_gpu: True
- num_gpus: 1
- gpu: TITAN RTX
- gpu_ram_mb: 24217
- gpu_power_watts: 280.0
- gpu_performance_state: 2
- use_tpu: False
推理时间和推理所需内存会被重新测量,不过这次是针对 BertModel
类的自定义配置进行基准测试。这个功能在决定模型应该使用哪种配置进行训练时尤其有用。
基准测试的推荐策略
本节列出了一些在对模型进行基准测试时比较推荐的策略:
- 目前,该模块只支持单设备基准测试。在进行 GPU 基准测试时,建议用户通过设置
CUDA_VISIBLE_DEVICES
环境变量来指定代码应在哪个设备上运行,例如在运行代码前执行export CUDA_VISIBLE_DEVICES=0
。 no_multi_processing
选项仅应在测试和调试时设置为True
。为了确保内存测量的准确性,建议将每个内存基准测试单独运行在一个进程中,并确保no_multi_processing
设置为True
。- 当您分享模型基准测试结果时,应始终提供环境信息。由于 GPU 设备、库版本等之间可能存在较大差异,单独的基准测试结果对社区的帮助有限。
分享您的基准测试结果
先前的所有可用的核心模型(当时有10个)都已针对 推理时间 进行基准测试,涵盖了多种不同的设置:使用 PyTorch(包不包含 TorchScript),使用 TensorFlow(包不包含 XLA)。所有的测试都在 CPU(除了 TensorFlow XLA)和 GPU 上进行。
这种方法的详细信息可以在 这篇博客 中找到,测试结果可以在 这里 查看。
您可以借助新的 基准测试 工具比以往任何时候都更容易地分享您的基准测试结果!
< > Update on GitHub