Spaces:
Running
Running
File size: 24,219 Bytes
8f8b054 cacf045 2a77201 340b448 d1b5811 90c33f0 044aa43 04efe9c b6a7e6d c6aa746 c95d871 c6aa746 c536685 c6aa746 9167024 c6aa746 d05c994 ceb94a2 d05c994 f5ccec5 b32bf67 d05c994 f5ccec5 da6267a d05c994 f5ccec5 d05c994 0034c8b b32bf67 0034c8b b32bf67 f5ccec5 70be83d ceb94a2 f5ccec5 c6aa746 fc197f1 c6aa746 fc197f1 c6aa746 b6a7e6d c6aa746 b6a7e6d c6aa746 b6a7e6d ebca844 c6aa746 244e2b5 86755ca b6a7e6d dc661de b6a7e6d 86755ca b6a7e6d 86755ca 244e2b5 86755ca f5ccec5 86755ca b6a7e6d 86755ca b6a7e6d 7cd2fc2 b6a7e6d ad8c1ce b6a7e6d ad8c1ce b6a7e6d 7cd2fc2 6b8b0b6 7cd2fc2 5ccfb52 b6a7e6d 7cd2fc2 5ccfb52 b6a7e6d 5ccfb52 b6a7e6d 5ccfb52 2a77201 11dd9d5 7cd2fc2 11dd9d5 7cd2fc2 11dd9d5 7cd2fc2 a8bcd0c 11dd9d5 7cd2fc2 a8bcd0c 11dd9d5 6d6f3c6 11dd9d5 d1b5811 7cd2fc2 11dd9d5 7cd2fc2 11dd9d5 469d918 11dd9d5 d1b5811 11dd9d5 469d918 11dd9d5 ef6f553 11dd9d5 d1b5811 11dd9d5 6d6f3c6 11dd9d5 6d6f3c6 469d918 11dd9d5 469d918 11dd9d5 469d918 11dd9d5 469d918 d1b5811 122a1ed 9167024 469d918 9167024 122a1ed 9167024 d1b5811 9167024 7ff3365 7fe40fc 37dedc6 7ff3365 11dd9d5 ef6f553 11dd9d5 ef6f553 11dd9d5 b75d54e 7cd2fc2 11dd9d5 05564e5 2587718 469d918 11dd9d5 2587718 6d6f3c6 2587718 469d918 11dd9d5 bd2ccaf 11dd9d5 ef6f553 11dd9d5 d1b5811 11dd9d5 d1b5811 a392854 11dd9d5 06b54b2 11dd9d5 0875164 a392854 11dd9d5 0875164 11dd9d5 d1b5811 11dd9d5 8138582 bef8ac3 6d6f3c6 7cd2fc2 11dd9d5 7cd2fc2 6d6f3c6 11dd9d5 6d6f3c6 0875164 11dd9d5 6d6f3c6 11dd9d5 8f8b054 b6a7e6d 8f8b054 6d6f3c6 8f8b054 3d0b315 c9b91a3 8f8b054 96126a5 c9b91a3 c6aa746 11dd9d5 c9b91a3 11dd9d5 c6aa746 64ad2b4 11dd9d5 b32bf67 11dd9d5 c6aa746 f038d97 11dd9d5 c6aa746 8f8b054 469d918 c9b91a3 b6a7e6d 6b8b0b6 b6a7e6d b6261fc b6a7e6d 6d6f3c6 c6aa746 6d6f3c6 469d918 b6a7e6d a79cfa4 b6a7e6d a79cfa4 b6a7e6d 8f8b054 c9b91a3 8f8b054 4d63ad9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.metrics import f1_score
import seaborn as sns
#################### BEAM PREDICTION #########################}
def beam_prediction_task(data_percentage, task_complexity):
# Folder naming convention based on input_type, data_percentage, and task_complexity
raw_folder = f"images/raw_{data_percentage/100:.1f}_{task_complexity}"
embeddings_folder = f"images/embedding_{data_percentage/100:.1f}_{task_complexity}"
# Process raw confusion matrix
raw_cm = compute_average_confusion_matrix(raw_folder)
if raw_cm is not None:
raw_cm_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
plot_confusion_matrix_beamPred(raw_cm, classes=np.arange(raw_cm.shape[0]), title=f"Raw Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=raw_cm_path)
raw_img = Image.open(raw_cm_path)
else:
raw_img = None
# Process embeddings confusion matrix
embeddings_cm = compute_average_confusion_matrix(embeddings_folder)
if embeddings_cm is not None:
embeddings_cm_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
plot_confusion_matrix_beamPred(embeddings_cm, classes=np.arange(embeddings_cm.shape[0]), title=f"Embeddings Confusion Matrix\n({data_percentage}% data, {task_complexity} beams)", save_path=embeddings_cm_path)
embeddings_img = Image.open(embeddings_cm_path)
else:
embeddings_img = None
return raw_img, embeddings_img
from sklearn.metrics import f1_score
# Function to compute the F1-score based on the confusion matrix
def compute_f1_score(cm):
# Compute precision and recall
TP = np.diag(cm)
FP = np.sum(cm, axis=0) - TP
FN = np.sum(cm, axis=1) - TP
precision = TP / (TP + FP)
recall = TP / (TP + FN)
# Handle division by zero in precision or recall
precision = np.nan_to_num(precision)
recall = np.nan_to_num(recall)
# Compute F1 score
f1 = 2 * (precision * recall) / (precision + recall)
f1 = np.nan_to_num(f1) # Replace NaN with 0
return np.mean(f1) # Return the mean F1-score across all classes
def plot_confusion_matrix_beamPred(cm, classes, title, save_path):
# Compute the average F1-score
avg_f1 = compute_f1_score(cm)
# Set dark mode styling
plt.style.use('dark_background')
plt.figure(figsize=(10, 10))
# Plot the confusion matrix with a dark-mode compatible colormap
#sns.heatmap(cm, cmap="magma", cbar=True, linecolor='white', vmin=0, vmax=cm.max(), alpha=0.85)
sns.heatmap(cm, cmap="cividis", cbar=True, linecolor='white', vmin=0, vmax=cm.max(), alpha=0.85)
# Add F1-score to the title
plt.title(f"{title}\n(F1 Score: {avg_f1:.3f})", color="white", fontsize=14)
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, color="white", fontsize=14) # White text for dark mode
plt.yticks(tick_marks, classes, color="white", fontsize=14) # White text for dark mode
plt.ylabel('True label', color="white", fontsize=14)
plt.xlabel('Predicted label', color="white", fontsize=14)
plt.tight_layout()
# Save the plot as an image
plt.savefig(save_path, transparent=True) # Use transparent to blend with the dark mode website
plt.close()
# Return the saved image
return Image.open(save_path)
def compute_average_confusion_matrix(folder):
confusion_matrices = []
max_num_labels = 0
# First pass to determine the maximum number of labels
for file in os.listdir(folder):
if file.endswith(".csv"):
data = pd.read_csv(os.path.join(folder, file))
num_labels = len(np.unique(data["Target"]))
max_num_labels = max(max_num_labels, num_labels)
# Second pass to calculate the confusion matrices and pad if necessary
for file in os.listdir(folder):
if file.endswith(".csv"):
data = pd.read_csv(os.path.join(folder, file))
y_true = data["Target"]
y_pred = data["Top-1 Prediction"]
num_labels = len(np.unique(y_true))
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred, labels=np.arange(max_num_labels))
# If the confusion matrix is smaller, pad it to match the largest size
if cm.shape[0] < max_num_labels:
padded_cm = np.zeros((max_num_labels, max_num_labels))
padded_cm[:cm.shape[0], :cm.shape[1]] = cm
confusion_matrices.append(padded_cm)
else:
confusion_matrices.append(cm)
if confusion_matrices:
avg_cm = np.mean(confusion_matrices, axis=0)
return avg_cm
else:
return None
########################## LOS/NLOS CLASSIFICATION #############################3
# Paths to the predefined images folder
LOS_PATH = "images_LoS"
# Define the percentage values
percentage_values_los = np.linspace(0.001, 1, 20) * 100 # 20 percentage values
from sklearn.metrics import f1_score
import seaborn as sns
# Function to compute confusion matrix, F1-score and plot it with dark mode style
def plot_confusion_matrix_from_csv(csv_file_path, title, save_path):
# Load CSV file
data = pd.read_csv(csv_file_path)
# Extract ground truth and predictions
y_true = data['Target']
y_pred = data['Top-1 Prediction']
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Compute F1-score
f1 = f1_score(y_true, y_pred, average='macro') # Macro-average F1-score
# Set dark mode styling
plt.style.use('dark_background')
plt.figure(figsize=(5, 5))
# Plot the confusion matrix with a dark-mode compatible colormap
sns.heatmap(cm, annot=True, fmt="d", cmap="magma", cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
# Add F1-score to the title
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color="white", fontsize=14)
# Customize tick labels for dark mode
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
plt.ylabel('True label', color="white", fontsize=12)
plt.xlabel('Predicted label', color="white", fontsize=12)
plt.tight_layout()
# Save the plot as an image
plt.savefig(save_path, transparent=True) # Use transparent to blend with the dark mode website
plt.close()
# Return the saved image
return Image.open(save_path)
# Function to load confusion matrix based on percentage and input_type
def display_confusion_matrices_los(percentage):
#percentage = percentage_values_los[percentage_idx]
# Construct folder names
raw_folder = os.path.join(LOS_PATH, f"raw_{percentage/100:.3f}_los_noTraining")
embeddings_folder = os.path.join(LOS_PATH, f"embedding_{percentage/100:.3f}_los_noTraining")
# Process raw confusion matrix
raw_csv_file = os.path.join(raw_folder, f"test_predictions_raw_{percentage/100:.3f}_los.csv")
raw_cm_img_path = os.path.join(raw_folder, "confusion_matrix_raw.png")
raw_img = plot_confusion_matrix_from_csv(raw_csv_file,
f"Raw Confusion Matrix ({percentage:.1f}% data)",
raw_cm_img_path)
# Process embeddings confusion matrix
embeddings_csv_file = os.path.join(embeddings_folder, f"test_predictions_embedding_{percentage/100:.3f}_los.csv")
embeddings_cm_img_path = os.path.join(embeddings_folder, "confusion_matrix_embeddings.png")
embeddings_img = plot_confusion_matrix_from_csv(embeddings_csv_file,
f"Embeddings Confusion Matrix ({percentage:.1f}% data)",
embeddings_cm_img_path)
return raw_img, embeddings_img
# Main function to handle user choice
def handle_user_choice(choice, percentage=None, uploaded_file=None):
if choice == "Use Default Dataset":
raw_img, embeddings_img = display_confusion_matrices_los(percentage)
return raw_img, embeddings_img, "" # Return empty string for console output
elif choice == "Upload Dataset":
if uploaded_file is not None:
raw_img, embeddings_img, console_output = process_hdf5_file(uploaded_file, percentage)
return raw_img, embeddings_img, console_output
else:
return "Please upload a dataset", "Please upload a dataset", "" # Return empty string for console output
else:
return "Invalid choice", "Invalid choice", "" # Return empty string for console output
# Custom class to capture print output
class PrintCapture(io.StringIO):
def __init__(self):
super().__init__()
self.output = []
def write(self, txt):
self.output.append(txt)
super().write(txt)
def get_output(self):
return ''.join(self.output)
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage):
#percentage = percentage_values_los[percentage_idx]
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
# Check if the images exist
if os.path.exists(raw_image_path):
raw_image = Image.open(raw_image_path)
else:
raw_image = create_random_image() # Use a fallback random image
if os.path.exists(embeddings_image_path):
embeddings_image = Image.open(embeddings_image_path)
else:
embeddings_image = create_random_image() # Use a fallback random image
return raw_image, embeddings_image
def los_nlos_classification(file, percentage):
if file is not None:
raw_cm_image, emb_cm_image, console_output = process_hdf5_file(file, percentage)
return raw_cm_image, emb_cm_image, console_output # Returning all three: two images and console output
else:
raw_image, embeddings_image = display_predefined_images(percentage)
return raw_image, embeddings_image, "" # Return an empty string for console output when no file is uploaded
# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
random_image = np.random.rand(*size, 3) * 255
return Image.fromarray(random_image.astype('uint8'))
import importlib.util
# Function to dynamically load a Python module from a given file path
def load_module_from_path(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
# Function to split dataset into training and test sets based on user selection
def split_dataset(channels, labels, percentage):
#percentage = percentage_values_los[percentage_idx] / 100
num_samples = channels.shape[0]
train_size = int(num_samples * percentage/100)
print(f'Number of Training Samples: {train_size}')
indices = np.arange(num_samples)
np.random.shuffle(indices)
train_idx, test_idx = indices[:train_size], indices[train_size:]
train_data, test_data = channels[train_idx], channels[test_idx]
train_labels, test_labels = labels[train_idx], labels[test_idx]
return train_data, test_data, train_labels, test_labels
# Function to calculate Euclidean distance between a point and a centroid
def euclidean_distance(x, centroid):
return np.linalg.norm(x - centroid)
import torch
def classify_based_on_distance(train_data, train_labels, test_data):
# Compute the centroids for the two classes
centroid_0 = train_data[train_labels == 0].mean(dim=0) # Use torch.mean
centroid_1 = train_data[train_labels == 1].mean(dim=0) # Use torch.mean
predictions = []
for test_point in test_data:
# Compute Euclidean distance between the test point and each centroid
dist_0 = euclidean_distance(test_point, centroid_0)
dist_1 = euclidean_distance(test_point, centroid_1)
predictions.append(0 if dist_0 < dist_1 else 1)
return torch.tensor(predictions) # Return predictions as a PyTorch tensor
def plot_confusion_matrix(y_true, y_pred, title):
cm = confusion_matrix(y_true, y_pred)
# Calculate F1 Score
f1 = f1_score(y_true, y_pred, average='weighted')
plt.style.use('dark_background')
plt.figure(figsize=(5, 5))
# Plot the confusion matrix with a dark-mode compatible colormap
sns.heatmap(cm, annot=True, fmt="d", cmap="magma", cbar=False, annot_kws={"size": 12}, linewidths=0.5, linecolor='white')
# Add F1-score to the title
plt.title(f"{title}\n(F1 Score: {f1:.3f})", color="white", fontsize=14)
# Customize tick labels for dark mode
plt.xticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
plt.yticks([0.5, 1.5], labels=['Class 0', 'Class 1'], color="white", fontsize=10)
plt.ylabel('True label', color="white", fontsize=12)
plt.xlabel('Predicted label', color="white", fontsize=12)
plt.tight_layout()
# Save the plot as an image
plt.savefig(f"{title}.png", transparent=True) # Use transparent to blend with the dark mode website
plt.close()
# Return the saved image
return Image.open(f"{title}.png")
def identical_train_test_split(output_emb, output_raw, labels, train_percentage):
N = output_emb.shape[0]
indices = torch.randperm(N)
test_split_index = int(N * 0.20)
test_indices = indices[:test_split_index]
remaining_indices = indices[test_split_index:]
train_split_index = int(len(remaining_indices) * train_percentage / 100)
print(f'Training Size: {train_split_index} out of remaining {len(remaining_indices)}')
train_indices = remaining_indices[:train_split_index]
train_emb = output_emb[train_indices]
test_emb = output_emb[test_indices]
train_raw = output_raw[train_indices]
test_raw = output_raw[test_indices]
train_labels = labels[train_indices]
test_labels = labels[test_indices]
return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels
# Store the original working directory when the app starts
original_dir = os.getcwd()
def process_hdf5_file(uploaded_file, percentage):
capture = PrintCapture()
sys.stdout = capture # Redirect print statements to capture
try:
model_repo_url = "https://huggingface.co/sadjadalikhani/lwm"
model_repo_dir = "./LWM"
# Step 1: Clone the repository if not already done
if not os.path.exists(model_repo_dir):
print(f"Cloning model repository from {model_repo_url}...")
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
# Step 2: Verify the repository was cloned and change the working directory
repo_work_dir = os.path.join(original_dir, model_repo_dir)
if os.path.exists(repo_work_dir):
os.chdir(repo_work_dir) # Change the working directory only once
print(f"Changed working directory to {os.getcwd()}")
#print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content
else:
print(f"Directory {repo_work_dir} does not exist.")
return
# Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
inference_path = os.path.join(os.getcwd(), 'inference.py')
# Load lwm_model
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
# Load input_preprocess
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
# Load inference
inference = load_module_from_path("inference", inference_path)
# Step 4: Load the model from lwm_model module
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"Loading the LWM model on {device}...")
model = lwm_model.lwm.from_pretrained(device=device).float()
# Step 5: Load the HDF5 file and extract the channels and labels
with h5py.File(uploaded_file.name, 'r') as f:
channels = np.array(f['channels']).astype(np.complex64)
labels = np.array(f['labels']).astype(np.int32)
print(f"Loaded dataset with {channels.shape[0]} samples.")
# Step 7: Tokenize the data using the tokenizer from input_preprocess
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
# Step 7: Perform inference using the functions from inference.py
output_emb = inference.lwm_inference(preprocessed_chs, 'cls_emb', model, device)
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
print(f"Output Embeddings Shape: {output_emb.shape}")
print(f"Output Raw Shape: {output_raw.shape}")
print(f'percentage_value: {percentage}')
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(output_emb.view(len(output_emb),-1),
output_raw.view(len(output_raw),-1),
labels,
percentage)
# Step 8: Perform classification using the Euclidean distance for both raw and embeddings
print(f'train_data_emb: {train_data_emb.shape}')
print(f'train_labels: {train_labels.shape}')
print(f'test_data_emb: {test_data_emb.shape}')
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
# Step 9: Generate confusion matrices for both raw and embeddings
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
return raw_cm_image, emb_cm_image, capture.get_output()
except Exception as e:
return str(e), str(e), capture.get_output()
finally:
# Always return to the original working directory after processing
os.chdir(original_dir)
sys.stdout = sys.__stdout__ # Reset print statements
######################## Define the Gradio interface ###############################
with gr.Blocks(css="""
.slider-container {
display: inline-block;
margin-right: 50px;
text-align: center;
}
.explanation-box {
font-size: 16px;
font-style: italic;
color: #4a4a4a;
padding: 15px;
background-color: #f0f0f0;
border-radius: 10px;
margin-bottom: 20px;
}
""") as demo:
# Contact Section
gr.Markdown("""
<div style="text-align: center;">
<a target="_blank" href="https://www.wi-lab.net">
<img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;">
</a>
<a target="_blank" href="mailto:alikhani@asu.edu" style="margin-left: 10px;">
<img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail" alt="Email">
</a>
</div>
""")
# Tab for Beam Prediction Task
with gr.Tab("Beam Prediction Task"):
gr.Markdown("### Beam Prediction Task")
# Explanation section with creative spacing and minimal design
gr.Markdown("""
<div class="explanation-box">
In this task, you'll predict the strongest mmWave beam from a predefined codebook based on Sub-6 GHz channels. Adjust the data percentage and task complexity to observe how LWM performs on different settings.
</div>
""")
with gr.Row():
with gr.Column():
data_percentage_slider = gr.Slider(label="Data Percentage for Training", minimum=10, maximum=100, step=10, value=10)
task_complexity_dropdown = gr.Dropdown(label="Task Complexity (Number of Beams)", choices=[16, 32, 64, 128, 256], value=16)
with gr.Row():
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=500)
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=500)
# Update the confusion matrices whenever sliders change
data_percentage_slider.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
task_complexity_dropdown.change(fn=beam_prediction_task, inputs=[data_percentage_slider, task_complexity_dropdown], outputs=[raw_img_bp, embeddings_img_bp])
# Separate Tab for LoS/NLoS Classification Task
with gr.Tab("LoS/NLoS Classification Task"):
gr.Markdown("### LoS/NLoS Classification Task")
# Explanation section with creative spacing
gr.Markdown("""
<div class="explanation-box">
Use this task to classify whether a channel is LoS (Line-of-Sight) or NLoS (Non-Line-of-Sight). You can either upload your own dataset or use the default dataset to explore how LWM embeddings compare to raw channels.
</div>
""")
# Radio button for user choice: predefined data or upload dataset
choice_radio = gr.Radio(choices=["Use Default Dataset", "Upload Dataset"], label="Choose how to proceed", value="Use Default Dataset")
percentage_slider_los = gr.Slider(minimum=float(percentage_values_los[0]),
maximum=float(percentage_values_los[-1]),
step=float(percentage_values_los[1] - percentage_values_los[0]),
value=float(percentage_values_los[0]),
label="Percentage of Data for Training")
# File uploader for dataset (only visible if user chooses to upload a dataset)
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"], visible=False)
# Confusion matrices display
with gr.Row():
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300)
output_textbox = gr.Textbox(label="Console Output", lines=10)
# Update the file uploader visibility based on user choice
def toggle_file_input(choice):
return gr.update(visible=(choice == "Upload Dataset"))
choice_radio.change(fn=toggle_file_input, inputs=[choice_radio], outputs=file_input)
# When user makes a choice, update the display
choice_radio.change(fn=handle_user_choice, inputs=[choice_radio, percentage_slider_los, file_input],
outputs=[raw_img_los, embeddings_img_los, output_textbox])
# When percentage slider changes (for predefined data)
percentage_slider_los.change(fn=handle_user_choice, inputs=[choice_radio, percentage_slider_los, file_input],
outputs=[raw_img_los, embeddings_img_los, output_textbox])
# Launch the app
if __name__ == "__main__":
demo.launch()
|