🔍 From instruction-following to creative storytelling, dive into 2024's most impactful AI datasets! These gems are shaping everything from scientific research to video understanding.
Did a fun experiment: What are the main themes emerging from the 100+ Nieman Journalism Lab predictions for 2025?
I used natural language processing to cluster and map them — really helps spot patterns that weren't obvious when reading predictions one by one. So what will shape journalism next year? A lot of AI and US politics (surprise!), but there's also this horizontal axis that spans from industry strategies to deep reflections on how to talk to the public.
Click any dot to explore the original prediction. What themes surprise/interest you the most?
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute 🔥
How? By combining step-wise reward models with tree search algorithms :)
We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"
We're open sourcing the full recipe and sharing a detailed blog post.
In our blog post we cover:
📈 Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.
🎄 Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.
🧭 Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM
🇪🇺 Policy Thoughts in the EU AI Act Implementation 🇪🇺
There is a lot to like in the first draft of the EU GPAI Code of Practice, especially as regards transparency requirements. The Systemic Risks part, on the other hand, is concerning for both smaller developers and for external stakeholders.
I wrote more on this topic ahead of the next draft. TLDR: more attention to immediate large-scale risks and to collaborative solutions supported by evidence can help everyone - as long as developers disclose sufficient information about their design choices and deployment contexts.
Key Idea: A data-dependent weighted average for pooling and communication, enabling flexible and powerful neural network connections.
Breakthrough: Bahdanau's "soft search" mechanism (softmax + weighted averaging) solved encoder-decoder bottlenecks in machine translation. Transformer Revolution: Attention Is All You Need (1706.03762) (2017) by @ashishvaswanigoogle et al. simplified architectures by stacking attention layers, introducing multi-headed attention and positional encodings. Legacy: Attention replaced RNNs, driving modern AI systems like ChatGPT. It emerged independently but was influenced by contemporaneous work like Alex Graves’s Neural Turing Machines (1410.5401) and Jason Weston’s Memory Networks (1410.3916) .
Attention to history: Jürgen Schmidhuber claims his 1992 Fast Weight Programmers anticipated modern attention mechanisms. While conceptually similar, the term “attention” was absent, and there’s no evidence it influenced Bahdanau, Cho, and Bengio’s 2014 work. Paying attention (!) to history might have brought us to genAI earlier – but credit for the breakthrough still goes to Montreal.
Who else deserves recognition in this groundbreaking narrative of innovation? Let’s ensure every contributor gets the credit they deserve. Leave a comment below 👇🏻🤗
We applied the same data-driven approach that led to SOTA English performance in🍷 FineWeb to thousands of languages.
🥂 FineWeb2 has 8TB of compressed text data and outperforms other multilingual datasets in our experiments.
The dataset is released under the permissive 📜 ODC-By 1.0 license, and the 💻 code to reproduce it and our evaluations is public.
We will very soon announce a big community project, and are working on a 📝 blogpost walking you through the entire dataset creation process. Stay tuned!
This teaser barely captures the heat between Meta 🇺🇸, Stability 🇬🇧 & Black Forest Labs 🇩🇪 racing for HF Hub likes. Want to see the full Fast & Furious AI showdown? Check the link below! 🏎️💨
📈👀 Just dropped: visualization mapping Hugging Face's most liked & downloaded models from 2022 to now. Small models are clearly on the rise - fascinating shift in both likes and download patterns.
Keeping up with open-source AI in 2024 = overwhelming.
Here's help: We're launching our Year in Review on what actually matters, starting today!
Fresh content dropping daily until year end. Come along for the ride - first piece out now with @clem's predictions for 2025.
Think of it as your end-of-year AI chocolate calendar.
Kudos to @BrigitteTousi@clefourrier@Wauplin@thomwolf for making it happen. We teamed up with aiworld.eu for awesome visualizations to make this digestible—it's a charm to work with their team.
Six predictions for AI in 2025 (and a review of how my 2024 predictions turned out):
- There will be the first major public protest related to AI - A big company will see its market cap divided by two or more because of AI - At least 100,000 personal AI robots will be pre-ordered - China will start to lead the AI race (as a consequence of leading the open-source AI race). - There will be big breakthroughs in AI for biology and chemistry. - We will begin to see the economic and employment growth potential of AI, with 15M AI builders on Hugging Face.
How my predictions for 2024 turned out:
- A hyped AI company will go bankrupt or get acquired for a ridiculously low price ✅ (Inflexion, AdeptAI,...)
- Open-source LLMs will reach the level of the best closed-source LLMs ✅ with QwQ and dozens of others
- Big breakthroughs in AI for video, time-series, biology and chemistry ✅ for video 🔴for time-series, biology and chemistry
- We will talk much more about the cost (monetary and environmental) of AI ✅Monetary 🔴Environmental (😢)
- A popular media will be mostly AI-generated ✅ with NotebookLM by Google
- 10 millions AI builders on Hugging Face leading to no increase of unemployment 🔜currently 7M of AI builders on Hugging Face
Want the best of both worlds? I’m refining my test by combining a deep dive (today: Musk’s xAI rivalry) with shorter links to other news of the day (AI agent funding, healthcare improvements, and more!) in my daily newsletter. Let me know what you think.
The rapid progress in small audio models is mind-blowing! 🤯 Just tested OuteTTS v0.2 - cloned my voice from a 10s clip with impressive accuracy and natural prosody.
At 500M parameters, it's efficient enough to run on basic hardware but powerful enough for professional use.
This could transform how we produce audio content for new - think instant translated interviews keeping original voices, or scaled audio article production!
🤖 93% of Gen Z workers use AI tools weekly, but nearly half of all workers aren't comfortable admitting it. The tech adoption gap isn't about usage—it's about openness. Why are we still treating AI tools like a workplace secret? 🤔