File size: 8,102 Bytes
aa368ec d09ca16 aa368ec 7c458e8 aa368ec d09ca16 aa368ec 7c458e8 aa368ec 7b16ac4 28ad444 80d022d 09b0610 1fa8db8 80dbee5 1fa8db8 16c544d 03a1ac1 3becf23 d9a5c5b 2264fac 80dbee5 6292cb9 3becf23 2264fac d09ca16 edc9e3d d09ca16 d9a5c5b d09ca16 890bc32 28ad444 1fa8db8 da8a9f3 890bc32 d09ca16 d9a5c5b d09ca16 d9a5c5b aa368ec d09ca16 aa368ec 7221e0e e4c92fb 7221e0e d9a5c5b aa368ec d09ca16 aa368ec 6292cb9 0d4bbc0 6292cb9 2264fac 6292cb9 1fa8db8 6292cb9 03a1ac1 1fa8db8 6292cb9 16c544d aa368ec d09ca16 aa368ec d09ca16 d9a5c5b 28ad444 d9a5c5b 28ad444 aa368ec 2264fac aa368ec d09ca16 aa368ec d09ca16 aa368ec 2264fac aa368ec 28ad444 edc9e3d d09ca16 b1a8e77 edc9e3d e32ab64 debf5c6 edc9e3d debf5c6 474b727 debf5c6 edc9e3d debf5c6 e32ab64 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import List
import datasets
_CITATION = '''\
@article{mendoza2023foundational,
title={A Foundational Large Language Model for Edible Plant Genomes},
author={Mendoza-Revilla, Javier and Trop, Evan and Gonzalez, Liam and Roller, Masa and Dalla-Torre, Hugo and de Almeida, Bernardo P and Richard, Guillaume and Caton, Jonathan and Lopez Carranza, Nicolas and Skwark, Marcin and others},
journal={bioRxiv},
pages={2023--10},
year={2023},
publisher={Cold Spring Harbor Laboratory}
}
'''
_DESCRIPTION = """\
This dataset comprises the various supervised learning tasks considered in the agro-nt
paper. The task types include binary classification,multi-label classification,
regression,and multi-output regression. The actual underlying genomic tasks range from
predicting regulatory features, RNA processing sites, and gene expression values.
"""
_LICENSE = "https://huggingface.co/datasets/InstaDeepAI/plant-genomic-benchmark/blob/main/LICENSE.md"
_TASK_NAMES = ['poly_a.arabidopsis_thaliana',
'poly_a.oryza_sativa_indica_group',
'poly_a.trifolium_pratense',
'poly_a.medicago_truncatula',
'poly_a.chlamydomonas_reinhardtii',
'poly_a.oryza_sativa_japonica_group',
'splicing.arabidopsis_thaliana_donor',
'splicing.arabidopsis_thaliana_acceptor',
'lncrna.m_esculenta',
'lncrna.z_mays',
'lncrna.g_max',
'lncrna.s_lycopersicum',
'lncrna.t_aestivum',
'lncrna.s_bicolor',
'promoter_strength.leaf',
'promoter_strength.protoplast',
'terminator_strength.leaf',
'terminator_strength.protoplast',
'gene_exp.glycine_max',
'gene_exp.oryza_sativa',
'gene_exp.solanum_lycopersicum',
'gene_exp.zea_mays',
'gene_exp.arabidopsis_thaliana',
'chromatin_access.oryza_sativa_MH63_RS2',
'chromatin_access.setaria_italica',
'chromatin_access.oryza_sativa_ZS97_RS2',
'chromatin_access.arabidopis_thaliana',
'chromatin_access.brachypodium_distachyon',
'chromatin_access.sorghum_bicolor',
'chromatin_access.zea_mays',
'pro_seq.m_esculenta']
_TASK_INFO = {'poly_a':{'type': 'binary', 'val_set':False},
'splicing':{'type': 'binary', 'val_set':False},
'lncrna':{'type': 'binary', 'val_set':False},
'promoter_strength': {'type': 'regression', 'val_set': True},
'terminator_strength': {'type': 'regression', 'val_set': True},
'gene_exp':{'type':'multi_regression','val_set':True},
'chromatin_access':{'type':'multi_label','val_set':True},
'pro_seq':{'type':'binary','val_set':True}
}
# This function is a basic reimplementation of SeqIO's parse method. This allows the
# dataset viewer to work as it does not require an external package.
def parse_fasta(fp):
name, seq = None, []
for line in fp:
line = line.rstrip()
if line.startswith(">"):
if name:
# Slice to remove '>'
yield (name[1:], "".join(seq))
name, seq = line, []
else:
seq.append(line)
if name:
# Slice to remove '>'
yield (name[1:], "".join(seq))
class AgroNtTasksConfig(datasets.BuilderConfig):
"""BuilderConfig for the Agro NT supervised learning tasks dataset."""
def __init__(self, *args, task_name: str, **kwargs):
"""BuilderConfig downstream tasks dataset.
Args:
task (:obj:`str`): Task name.
**kwargs: keyword arguments forwarded to super.
"""
self.task,self.sub_task = task_name.split(".")
self.task_type = _TASK_INFO[self.task]['type']
self.val_set = _TASK_INFO[self.task]['val_set']
super().__init__(
*args,
name=f"{task_name}",
**kwargs,
)
class AgroNtTasks(datasets.GeneratorBasedBuilder):
"""GeneratorBasedBuilder for the Agro NT supervised learning tasks dataset."""
BUILDER_CONFIG_CLASS = AgroNtTasksConfig
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [AgroNtTasksConfig(task_name=TASK_NAME) for TASK_NAME
in _TASK_NAMES]
def _info(self):
feature_dit = {"sequence": datasets.Value("string"),
"name": datasets.Value("string")}
if self.config.task_type == 'binary':
feature_dit["label"] = datasets.Value("int8")
elif self.config.task_type == 'regression':
feature_dit["label"] = datasets.Value("float32")
elif self.config.task_type == 'multi_regression':
feature_dit['labels'] = [datasets.Value("float32")]
elif self.config.task_type == 'multi_label':
feature_dit['labels'] = [datasets.Value("int8")]
features = datasets.Features(feature_dit)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
train_file = dl_manager.download_and_extract(
os.path.join(self.config.task, self.config.sub_task + "_train.fa"))
test_file = dl_manager.download_and_extract(
os.path.join(self.config.task, self.config.sub_task + "_test.fa"))
generator_list = [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": train_file,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": test_file,
},
),
]
if self.config.val_set:
validation_file = dl_manager.download_and_extract(
os.path.join(self.config.task, self.config.sub_task + "_validation.fa"))
generator_list += datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": validation_file,
},
),
return generator_list
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
key = 0
with open(filepath, "rt") as f:
fasta_sequences = parse_fasta(f)
for name, seq in fasta_sequences:
# Yields examples as (key, example) tuples
sequence, name = str(seq), str(name)
split_name = name.split("|")
name = split_name[0]
labels = split_name[1:]
if 'multi' in self.config.task_type:
yield key, {
"sequence": sequence,
"name": name,
"labels": labels
}
else:
yield key, {
"sequence": sequence,
"name": name,
"label": labels[0],
}
key += 1 |