Edit model card
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Quantization made by Richard Erkhov.

Github

Discord

Request more models

Aira-2-1B5 - bnb 4bits

Original model description:

license: apache-2.0 datasets: - nicholasKluge/instruct-aira-dataset language: - en metrics: - accuracy library_name: transformers tags: - alignment - instruction tuned - text generation - conversation - assistant pipeline_tag: text-generation widget: - text: "<|startofinstruction|>Can you explain what is Machine Learning?<|endofinstruction|>" example_title: Machine Learning - text: "<|startofinstruction|>Do you know anything about virtue ethics?<|endofinstruction|>" example_title: Ethics - text: "<|startofinstruction|>How can I make my girlfriend happy?<|endofinstruction|>" example_title: Advise inference: parameters: repetition_penalty: 1.2 temperature: 0.2 top_k: 30 top_p: 0.3 max_new_tokens: 200 length_penalty: 0.3 early_stopping: true co2_eq_emissions: emissions: 1690 source: CodeCarbon training_type: fine-tuning geographical_location: United States of America hardware_used: NVIDIA A100-SXM4-40GB

Aira-2-1B5

Aira-2 is the second version of the Aira instruction-tuned series. Aira-2-1B5 is an instruction-tuned model based on GPT-2. The model was trained with a dataset composed of prompts and completions generated synthetically by prompting already-tuned models (ChatGPT, Llama, Open-Assistant, etc).

Check our gradio-demo in Spaces.

Details

  • Size: 1,557,614,400 parameters
  • Dataset: Instruct-Aira Dataset
  • Language: English
  • Number of Epochs: 3
  • Batch size: 4
  • Optimizer: torch.optim.AdamW (warmup_steps = 1e2, learning_rate = 5e-4, epsilon = 1e-8)
  • GPU: 1 NVIDIA A100-SXM4-40GB
  • Emissions: 1.69 KgCO2 (Singapore)
  • Total Energy Consumption: 3.47 kWh

This repository has the source code used to train this model.

Usage

Three special tokens are used to mark the user side of the interaction and the model's response:

<|startofinstruction|>What is a language model?<|endofinstruction|>A language model is a probability distribution over a vocabulary.<|endofcompletion|>

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/Aira-2-1B5')
aira = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-2-1B5')

aira.eval()
aira.to(device)

question =  input("Enter your question: ")

inputs = tokenizer(tokenizer.bos_token + question + tokenizer.sep_token,
  add_special_tokens=False,
  return_tensors="pt").to(device)

responses = aira.generate(**inputs,	num_return_sequences=2)

print(f"Question: 馃懁 {question}\n")

for i, response in  enumerate(responses):
    print(f'Response {i+1}: 馃 {tokenizer.decode(response, skip_special_tokens=True).replace(question, "")}')

The model will output something like:

>>>Question: 馃懁 What is the capital of Brazil?

>>>Response 1: 馃 The capital of Brazil is Bras铆lia.
>>>Response 2: 馃 The capital of Brazil is Bras铆lia.

Limitations

  • Hallucinations: This model can produce content that can be mistaken for truth but is, in fact, misleading or entirely false, i.e., hallucination.

  • Biases and Toxicity: This model inherits the social and historical stereotypes from the data used to train it. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.

  • Repetition and Verbosity: The model may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.

Evaluation

Model Average ARC TruthfulQA ToxiGen
Aira-2-124M-DPO 40.68 24.66 42.61 54.79
Aira-2-124M 38.07 24.57 41.02 48.62
GPT-2 35.37 21.84 40.67 43.62
Aira-2-355M 39.68 27.56 38.53 53.19
GPT-2-medium 36.43 27.05 40.76 41.49
Aira-2-774M 42.26 28.75 41.33 56.70
GPT-2-large 35.16 25.94 38.71 40.85
Aira-2-1B5 42.22 28.92 41.16 56.60
GPT-2-xl 36.84 30.29 38.54 41.70

Cite as 馃

@misc{nicholas22aira,
  doi = {10.5281/zenodo.6989727},
  url = {https://github.com/Nkluge-correa/Aira},
  author = {Nicholas Kluge Corr锚a},
  title = {Aira},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
}

@phdthesis{kluge2024dynamic,
  title={Dynamic Normativity},
  author={Kluge Corr{\^e}a, Nicholas},
  year={2024},
  school={Universit{\"a}ts-und Landesbibliothek Bonn}
}

License

Aira-2-1B5 is licensed under the Apache License, Version 2.0. See the LICENSE file for more details.

Downloads last month
7
Safetensors
Model size
843M params
Tensor type
F32
FP16
U8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.