File size: 9,355 Bytes
8f8b054
 
 
 
cacf045
2a77201
 
340b448
 
d1b5811
 
 
8f8b054
 
 
 
 
d1b5811
8f8b054
 
2a77201
 
 
 
 
 
 
 
 
 
 
 
 
8f8b054
d1b5811
8f8b054
d1b5811
 
8f8b054
 
 
 
 
e14ecb7
8030161
 
 
 
1012e18
a392854
 
 
 
 
 
 
d1b5811
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc8a6bd
d1b5811
 
 
 
 
 
 
 
 
 
 
e1d11cc
bc8a6bd
 
bef8ac3
bc8a6bd
 
bef8ac3
 
 
 
 
 
 
 
 
bc8a6bd
 
 
 
 
 
 
 
 
 
 
 
 
df7ce72
 
 
798b3c0
2a77201
bc8a6bd
d2d9264
0176215
2587718
 
 
 
df7ce72
 
bc8a6bd
a392854
 
 
 
d1b5811
 
 
a392854
 
 
 
d1b5811
bc8a6bd
 
a392854
d1b5811
bef8ac3
 
 
bc8a6bd
 
 
 
 
bef8ac3
d1b5811
 
a392854
d1b5811
 
1012e18
d1b5811
7e7ba0a
0176215
2a77201
 
 
df7ce72
bc8a6bd
8f8b054
d1b5811
8f8b054
d1b5811
8f8b054
d1b5811
8f8b054
bc8a6bd
8f8b054
 
 
bc8a6bd
 
 
 
 
 
 
 
 
8f8b054
 
 
 
bc8a6bd
 
 
 
 
 
 
 
8f8b054
bc8a6bd
8f8b054
 
 
 
 
 
bc8a6bd
 
 
 
d1b5811
8f8b054
 
 
d1b5811
8f8b054
 
bc8a6bd
 
 
 
 
d1b5811
 
8f8b054
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt

# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")

# Specific values for percentage of data for training
percentage_values = [10, 30, 50, 70, 100]

# Custom class to capture print output
class PrintCapture(io.StringIO):
    def __init__(self):
        super().__init__()
        self.output = []

    def write(self, txt):
        self.output.append(txt)
        super().write(txt)

    def get_output(self):
        return ''.join(self.output)

# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx):
    percentage = percentage_values[percentage_idx]
    raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png")  # Assume complexity 16 for simplicity
    embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
    
    raw_image = Image.open(raw_image_path)
    embeddings_image = Image.open(embeddings_image_path)
    
    return raw_image, embeddings_image

# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
    random_image = np.random.rand(*size, 3) * 255
    return Image.fromarray(random_image.astype('uint8'))

# Function to dynamically load a Python module from a given file path
def load_module_from_path(module_name, file_path):
    spec = importlib.util.spec_from_file_location(module_name, file_path)
    module = importlib.util.module_from_spec(spec)
    spec.loader.exec_module(module)
    return module

# Function to split dataset into training and test sets based on user selection
def split_dataset(channels, labels, percentage_idx):
    percentage = percentage_values[percentage_idx] / 100
    num_samples = channels.shape[0]
    train_size = int(num_samples * percentage)
    indices = np.arange(num_samples)
    np.random.shuffle(indices)
    
    train_idx, test_idx = indices[:train_size], indices[train_size:]
    train_data, test_data = channels[train_idx], channels[test_idx]
    train_labels, test_labels = labels[train_idx], labels[test_idx]
    
    return train_data, test_data, train_labels, test_labels

# Function to generate confusion matrix plot
def plot_confusion_matrix(y_true, y_pred, title):
    cm = confusion_matrix(y_true, y_pred)
    plt.figure(figsize=(4, 4))
    plt.imshow(cm, cmap='Blues')
    plt.title(title)
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.colorbar()
    plt.xticks([0, 1], labels=[0, 1])
    plt.yticks([0, 1], labels=[0, 1])
    plt.tight_layout()
    plt.savefig(f"{title}.png")
    return Image.open(f"{title}.png")

def identical_train_test_split(output_emb, output_raw, labels, percentage):
    N = output_emb.shape[0]  
    indices = torch.randperm(N)  
    split_index = int(N * percentage)
    train_indices = indices[:split_index]
    test_indices = indices[split_index:]
    train_emb = output_emb[train_indices]
    test_emb = output_emb[test_indices]
    train_raw = output_raw[train_indices]
    test_raw = output_raw[test_indices]
    train_labels = labels[train_indices]
    test_labels = labels[test_indices]

    return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels

# Function to classify test data based on distance to class centroids
def classify_based_on_distance(train_data, train_labels, test_data):
    centroid_0 = train_data[train_labels == 0].mean(dim=0)  
    centroid_1 = train_data[train_labels == 1].mean(dim=0)  
    
    predictions = []
    for test_point in test_data:
        dist_0 = torch.norm(test_point - centroid_0)
        dist_1 = torch.norm(test_point - centroid_1)
        predictions.append(0 if dist_0 < dist_1 else 1)
    
    return torch.tensor(predictions)  

# Store the original working directory when the app starts
original_dir = os.getcwd()

def process_hdf5_file(uploaded_file, percentage_idx):
    capture = PrintCapture()
    sys.stdout = capture  
    
    try:
        model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
        model_repo_dir = "./LWM"
        if not os.path.exists(model_repo_dir):
            subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
        repo_work_dir = os.path.join(original_dir, model_repo_dir)
        if os.path.exists(repo_work_dir):
            os.chdir(repo_work_dir)  
        lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
        input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
        inference_path = os.path.join(os.getcwd(), 'inference.py')

        lwm_model = load_module_from_path("lwm_model", lwm_model_path)
        input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
        inference = load_module_from_path("inference", inference_path)

        device = 'cpu'
        model = lwm_model.LWM.from_pretrained(device=device)

        with h5py.File(uploaded_file.name, 'r') as f:
            channels = np.array(f['channels'])
            labels = np.array(f['labels'])

        preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
        output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
        output_raw = inference.create_raw_dataset(preprocessed_chs, device)

        train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(
            output_emb.view(len(output_emb),-1),
            output_raw.view(len(output_raw),-1),
            labels,
            percentage_idx)
        
        pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
        pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)

        raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
        emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")

        return raw_cm_image, emb_cm_image, capture.get_output()

    except Exception as e:
        return str(e), str(e), capture.get_output()

    finally:
        os.chdir(original_dir)
        sys.stdout = sys.__stdout__  

def los_nlos_classification(file, percentage_idx):
    if file is not None:
        return process_hdf5_file(file, percentage_idx)
    else:
        return display_predefined_images(percentage_idx), None

# Define the Gradio interface with a compact, minimal layout
with gr.Blocks(css="""
    .slider-container {
        text-align: center;
        margin-bottom: 20px;
    }
    .image-row {
        justify-content: center;
        margin-top: 10px;
    }
    .output-box {
        max-width: 600px;
        margin: 0 auto;
    }
""") as demo:
    
    # Contact Section
    gr.Markdown("""
        <div style="text-align: center;">
            <a target="_blank" href="https://www.wi-lab.net">
                <img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;">
            </a>
            <a target="_blank" href="mailto:alikhani@asu.edu" style="margin-left: 10px;">
                <img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail" alt="Email">
            </a>
        </div>
    """)
    
    # Tabs for Beam Prediction and LoS/NLoS Classification
    with gr.Tab("Beam Prediction Task"):
        gr.Markdown("### Beam Prediction Task")
        with gr.Row():
            with gr.Column(elem_id="slider-container"):
                percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, label="Training Data (%)")
        with gr.Row(elem_id="image-row"):
            raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
            embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300)
        percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])

    with gr.Tab("LoS/NLoS Classification Task"):
        gr.Markdown("### LoS/NLoS Classification Task")
        file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])
        with gr.Row():
            with gr.Column(elem_id="slider-container"):
                percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, label="Training Data (%)")
        with gr.Row(elem_id="image-row"):
            raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
            embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300)
            output_textbox = gr.Textbox(label="Console Output", lines=8, elem_classes="output-box")
        file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
        percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])

# Launch the app
if __name__ == "__main__":
    demo.launch()