Spaces:
Running
Running
File size: 9,355 Bytes
8f8b054 cacf045 2a77201 340b448 d1b5811 8f8b054 d1b5811 8f8b054 2a77201 8f8b054 d1b5811 8f8b054 d1b5811 8f8b054 e14ecb7 8030161 1012e18 a392854 d1b5811 bc8a6bd d1b5811 e1d11cc bc8a6bd bef8ac3 bc8a6bd bef8ac3 bc8a6bd df7ce72 798b3c0 2a77201 bc8a6bd d2d9264 0176215 2587718 df7ce72 bc8a6bd a392854 d1b5811 a392854 d1b5811 bc8a6bd a392854 d1b5811 bef8ac3 bc8a6bd bef8ac3 d1b5811 a392854 d1b5811 1012e18 d1b5811 7e7ba0a 0176215 2a77201 df7ce72 bc8a6bd 8f8b054 d1b5811 8f8b054 d1b5811 8f8b054 d1b5811 8f8b054 bc8a6bd 8f8b054 bc8a6bd 8f8b054 bc8a6bd 8f8b054 bc8a6bd 8f8b054 bc8a6bd d1b5811 8f8b054 d1b5811 8f8b054 bc8a6bd d1b5811 8f8b054 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
import os
from PIL import Image
import numpy as np
import pickle
import io
import sys
import torch
import subprocess
import h5py
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
# Paths to the predefined images folder
RAW_PATH = os.path.join("images", "raw")
EMBEDDINGS_PATH = os.path.join("images", "embeddings")
# Specific values for percentage of data for training
percentage_values = [10, 30, 50, 70, 100]
# Custom class to capture print output
class PrintCapture(io.StringIO):
def __init__(self):
super().__init__()
self.output = []
def write(self, txt):
self.output.append(txt)
super().write(txt)
def get_output(self):
return ''.join(self.output)
# Function to load and display predefined images based on user selection
def display_predefined_images(percentage_idx):
percentage = percentage_values[percentage_idx]
raw_image_path = os.path.join(RAW_PATH, f"percentage_{percentage}_complexity_16.png") # Assume complexity 16 for simplicity
embeddings_image_path = os.path.join(EMBEDDINGS_PATH, f"percentage_{percentage}_complexity_16.png")
raw_image = Image.open(raw_image_path)
embeddings_image = Image.open(embeddings_image_path)
return raw_image, embeddings_image
# Function to create random images for LoS/NLoS classification results
def create_random_image(size=(300, 300)):
random_image = np.random.rand(*size, 3) * 255
return Image.fromarray(random_image.astype('uint8'))
# Function to dynamically load a Python module from a given file path
def load_module_from_path(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
# Function to split dataset into training and test sets based on user selection
def split_dataset(channels, labels, percentage_idx):
percentage = percentage_values[percentage_idx] / 100
num_samples = channels.shape[0]
train_size = int(num_samples * percentage)
indices = np.arange(num_samples)
np.random.shuffle(indices)
train_idx, test_idx = indices[:train_size], indices[train_size:]
train_data, test_data = channels[train_idx], channels[test_idx]
train_labels, test_labels = labels[train_idx], labels[test_idx]
return train_data, test_data, train_labels, test_labels
# Function to generate confusion matrix plot
def plot_confusion_matrix(y_true, y_pred, title):
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(4, 4))
plt.imshow(cm, cmap='Blues')
plt.title(title)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.colorbar()
plt.xticks([0, 1], labels=[0, 1])
plt.yticks([0, 1], labels=[0, 1])
plt.tight_layout()
plt.savefig(f"{title}.png")
return Image.open(f"{title}.png")
def identical_train_test_split(output_emb, output_raw, labels, percentage):
N = output_emb.shape[0]
indices = torch.randperm(N)
split_index = int(N * percentage)
train_indices = indices[:split_index]
test_indices = indices[split_index:]
train_emb = output_emb[train_indices]
test_emb = output_emb[test_indices]
train_raw = output_raw[train_indices]
test_raw = output_raw[test_indices]
train_labels = labels[train_indices]
test_labels = labels[test_indices]
return train_emb, test_emb, train_raw, test_raw, train_labels, test_labels
# Function to classify test data based on distance to class centroids
def classify_based_on_distance(train_data, train_labels, test_data):
centroid_0 = train_data[train_labels == 0].mean(dim=0)
centroid_1 = train_data[train_labels == 1].mean(dim=0)
predictions = []
for test_point in test_data:
dist_0 = torch.norm(test_point - centroid_0)
dist_1 = torch.norm(test_point - centroid_1)
predictions.append(0 if dist_0 < dist_1 else 1)
return torch.tensor(predictions)
# Store the original working directory when the app starts
original_dir = os.getcwd()
def process_hdf5_file(uploaded_file, percentage_idx):
capture = PrintCapture()
sys.stdout = capture
try:
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
model_repo_dir = "./LWM"
if not os.path.exists(model_repo_dir):
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
repo_work_dir = os.path.join(original_dir, model_repo_dir)
if os.path.exists(repo_work_dir):
os.chdir(repo_work_dir)
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
inference_path = os.path.join(os.getcwd(), 'inference.py')
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
inference = load_module_from_path("inference", inference_path)
device = 'cpu'
model = lwm_model.LWM.from_pretrained(device=device)
with h5py.File(uploaded_file.name, 'r') as f:
channels = np.array(f['channels'])
labels = np.array(f['labels'])
preprocessed_chs = input_preprocess.tokenizer(manual_data=channels)
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
train_data_emb, test_data_emb, train_data_raw, test_data_raw, train_labels, test_labels = identical_train_test_split(
output_emb.view(len(output_emb),-1),
output_raw.view(len(output_raw),-1),
labels,
percentage_idx)
pred_raw = classify_based_on_distance(train_data_raw, train_labels, test_data_raw)
pred_emb = classify_based_on_distance(train_data_emb, train_labels, test_data_emb)
raw_cm_image = plot_confusion_matrix(test_labels, pred_raw, title="Confusion Matrix (Raw Channels)")
emb_cm_image = plot_confusion_matrix(test_labels, pred_emb, title="Confusion Matrix (Embeddings)")
return raw_cm_image, emb_cm_image, capture.get_output()
except Exception as e:
return str(e), str(e), capture.get_output()
finally:
os.chdir(original_dir)
sys.stdout = sys.__stdout__
def los_nlos_classification(file, percentage_idx):
if file is not None:
return process_hdf5_file(file, percentage_idx)
else:
return display_predefined_images(percentage_idx), None
# Define the Gradio interface with a compact, minimal layout
with gr.Blocks(css="""
.slider-container {
text-align: center;
margin-bottom: 20px;
}
.image-row {
justify-content: center;
margin-top: 10px;
}
.output-box {
max-width: 600px;
margin: 0 auto;
}
""") as demo:
# Contact Section
gr.Markdown("""
<div style="text-align: center;">
<a target="_blank" href="https://www.wi-lab.net">
<img src="https://www.wi-lab.net/wp-content/uploads/2021/08/WI-name.png" alt="Wireless Model" style="height: 30px;">
</a>
<a target="_blank" href="mailto:alikhani@asu.edu" style="margin-left: 10px;">
<img src="https://img.shields.io/badge/email-alikhani@asu.edu-blue.svg?logo=gmail" alt="Email">
</a>
</div>
""")
# Tabs for Beam Prediction and LoS/NLoS Classification
with gr.Tab("Beam Prediction Task"):
gr.Markdown("### Beam Prediction Task")
with gr.Row():
with gr.Column(elem_id="slider-container"):
percentage_slider_bp = gr.Slider(minimum=0, maximum=4, step=1, value=0, label="Training Data (%)")
with gr.Row(elem_id="image-row"):
raw_img_bp = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
embeddings_img_bp = gr.Image(label="Embeddings", type="pil", width=300, height=300)
percentage_slider_bp.change(fn=display_predefined_images, inputs=[percentage_slider_bp], outputs=[raw_img_bp, embeddings_img_bp])
with gr.Tab("LoS/NLoS Classification Task"):
gr.Markdown("### LoS/NLoS Classification Task")
file_input = gr.File(label="Upload HDF5 Dataset", file_types=[".h5"])
with gr.Row():
with gr.Column(elem_id="slider-container"):
percentage_slider_los = gr.Slider(minimum=0, maximum=4, step=1, value=0, label="Training Data (%)")
with gr.Row(elem_id="image-row"):
raw_img_los = gr.Image(label="Raw Channels", type="pil", width=300, height=300)
embeddings_img_los = gr.Image(label="Embeddings", type="pil", width=300, height=300)
output_textbox = gr.Textbox(label="Console Output", lines=8, elem_classes="output-box")
file_input.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
percentage_slider_los.change(fn=los_nlos_classification, inputs=[file_input, percentage_slider_los], outputs=[raw_img_los, embeddings_img_los, output_textbox])
# Launch the app
if __name__ == "__main__":
demo.launch()
|