Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -75,6 +75,13 @@ def load_custom_model():
|
|
| 75 |
|
| 76 |
import importlib.util
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
# Function to process the uploaded .p file and perform inference using the custom model
|
| 79 |
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
| 80 |
capture = PrintCapture()
|
|
@@ -89,7 +96,7 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
| 89 |
print(f"Cloning model repository from {model_repo_url}...")
|
| 90 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
| 91 |
|
| 92 |
-
# Step 2: Verify the repository was cloned
|
| 93 |
if os.path.exists(model_repo_dir):
|
| 94 |
os.chdir(model_repo_dir)
|
| 95 |
print(f"Changed working directory to {os.getcwd()}")
|
|
@@ -98,33 +105,43 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
| 98 |
print(f"Directory {model_repo_dir} does not exist.")
|
| 99 |
return
|
| 100 |
|
| 101 |
-
# Step 3: Dynamically
|
| 102 |
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
return f"Error: lwm_model.py not found at {lwm_model_path}"
|
| 106 |
|
| 107 |
-
#
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
device = 'cpu'
|
| 114 |
print(f"Loading the LWM model on {device}...")
|
| 115 |
model = lwm_model.LWM.from_pretrained(device=device)
|
| 116 |
|
| 117 |
-
# Step 5:
|
| 118 |
-
from input_preprocess import tokenizer
|
| 119 |
with open(uploaded_file.name, 'rb') as f:
|
| 120 |
manual_data = pickle.load(f)
|
| 121 |
|
| 122 |
-
preprocessed_chs = tokenizer(manual_data=manual_data)
|
| 123 |
|
| 124 |
-
# Step 6: Perform inference
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
output_raw = create_raw_dataset(preprocessed_chs, device)
|
| 128 |
|
| 129 |
print(f"Output Embeddings Shape: {output_emb.shape}")
|
| 130 |
print(f"Output Raw Shape: {output_raw.shape}")
|
|
@@ -137,6 +154,8 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
| 137 |
finally:
|
| 138 |
sys.stdout = sys.__stdout__ # Reset print statements
|
| 139 |
|
|
|
|
|
|
|
| 140 |
# Function to handle logic based on whether a file is uploaded or not
|
| 141 |
def los_nlos_classification(file, percentage_idx, complexity_idx):
|
| 142 |
if file is not None:
|
|
|
|
| 75 |
|
| 76 |
import importlib.util
|
| 77 |
|
| 78 |
+
# Function to dynamically load a Python module from a given file path
|
| 79 |
+
def load_module_from_path(module_name, file_path):
|
| 80 |
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
| 81 |
+
module = importlib.util.module_from_spec(spec)
|
| 82 |
+
spec.loader.exec_module(module)
|
| 83 |
+
return module
|
| 84 |
+
|
| 85 |
# Function to process the uploaded .p file and perform inference using the custom model
|
| 86 |
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
| 87 |
capture = PrintCapture()
|
|
|
|
| 96 |
print(f"Cloning model repository from {model_repo_url}...")
|
| 97 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
| 98 |
|
| 99 |
+
# Step 2: Verify the repository was cloned and change the working directory
|
| 100 |
if os.path.exists(model_repo_dir):
|
| 101 |
os.chdir(model_repo_dir)
|
| 102 |
print(f"Changed working directory to {os.getcwd()}")
|
|
|
|
| 105 |
print(f"Directory {model_repo_dir} does not exist.")
|
| 106 |
return
|
| 107 |
|
| 108 |
+
# Step 3: Dynamically load lwm_model.py, input_preprocess.py, and inference.py
|
| 109 |
lwm_model_path = os.path.join(os.getcwd(), 'lwm_model.py')
|
| 110 |
+
input_preprocess_path = os.path.join(os.getcwd(), 'input_preprocess.py')
|
| 111 |
+
inference_path = os.path.join(os.getcwd(), 'inference.py')
|
| 112 |
+
|
| 113 |
+
# Load lwm_model
|
| 114 |
+
if os.path.exists(lwm_model_path):
|
| 115 |
+
lwm_model = load_module_from_path("lwm_model", lwm_model_path)
|
| 116 |
+
else:
|
| 117 |
return f"Error: lwm_model.py not found at {lwm_model_path}"
|
| 118 |
|
| 119 |
+
# Load input_preprocess
|
| 120 |
+
if os.path.exists(input_preprocess_path):
|
| 121 |
+
input_preprocess = load_module_from_path("input_preprocess", input_preprocess_path)
|
| 122 |
+
else:
|
| 123 |
+
return f"Error: input_preprocess.py not found at {input_preprocess_path}"
|
| 124 |
+
|
| 125 |
+
# Load inference
|
| 126 |
+
if os.path.exists(inference_path):
|
| 127 |
+
inference = load_module_from_path("inference", inference_path)
|
| 128 |
+
else:
|
| 129 |
+
return f"Error: inference.py not found at {inference_path}"
|
| 130 |
+
|
| 131 |
+
# Step 4: Load the model from lwm_model module
|
| 132 |
device = 'cpu'
|
| 133 |
print(f"Loading the LWM model on {device}...")
|
| 134 |
model = lwm_model.LWM.from_pretrained(device=device)
|
| 135 |
|
| 136 |
+
# Step 5: Tokenize the data using the tokenizer from input_preprocess
|
|
|
|
| 137 |
with open(uploaded_file.name, 'rb') as f:
|
| 138 |
manual_data = pickle.load(f)
|
| 139 |
|
| 140 |
+
preprocessed_chs = input_preprocess.tokenizer(manual_data=manual_data)
|
| 141 |
|
| 142 |
+
# Step 6: Perform inference using the functions from inference.py
|
| 143 |
+
output_emb = inference.lwm_inference(preprocessed_chs, 'channel_emb', model)
|
| 144 |
+
output_raw = inference.create_raw_dataset(preprocessed_chs, device)
|
|
|
|
| 145 |
|
| 146 |
print(f"Output Embeddings Shape: {output_emb.shape}")
|
| 147 |
print(f"Output Raw Shape: {output_raw.shape}")
|
|
|
|
| 154 |
finally:
|
| 155 |
sys.stdout = sys.__stdout__ # Reset print statements
|
| 156 |
|
| 157 |
+
|
| 158 |
+
|
| 159 |
# Function to handle logic based on whether a file is uploaded or not
|
| 160 |
def los_nlos_classification(file, percentage_idx, complexity_idx):
|
| 161 |
if file is not None:
|