Spaces:
Running
Running
Sadjad Alikhani
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -54,63 +54,35 @@ def load_custom_model():
|
|
54 |
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
55 |
capture = PrintCapture()
|
56 |
sys.stdout = capture # Redirect print statements to capture
|
57 |
-
|
58 |
try:
|
59 |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
60 |
model_repo_dir = "./LWM"
|
61 |
|
62 |
-
# Step 1: Clone the model repository if not already cloned
|
63 |
if not os.path.exists(model_repo_dir):
|
64 |
print(f"Cloning model repository from {model_repo_url}...")
|
65 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
66 |
-
|
67 |
-
# Debugging: Check if the directory exists and print contents
|
68 |
if os.path.exists(model_repo_dir):
|
69 |
os.chdir(model_repo_dir)
|
70 |
print(f"Changed working directory to {os.getcwd()}")
|
71 |
-
print(f"Directory content: {os.listdir(os.getcwd())}") # Debugging: Check repo content
|
72 |
else:
|
73 |
-
|
74 |
-
return
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
print(f"sys.path: {sys.path}")
|
82 |
-
|
83 |
-
# Step 3: Dynamically import the model after cloning
|
84 |
-
try:
|
85 |
-
from lwm_model import LWM # Custom model in the cloned repo
|
86 |
-
print("Successfully imported LWM model.")
|
87 |
-
except ImportError as e:
|
88 |
-
print(f"Error importing LWM model: {e}")
|
89 |
-
print("Make sure lwm_model.py exists in the cloned repository.")
|
90 |
-
return
|
91 |
-
|
92 |
-
# Step 4: Check if GPU is available and set the device
|
93 |
-
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
94 |
-
print(f"Using device: {device}")
|
95 |
-
|
96 |
-
# Load the model from the cloned repository
|
97 |
model = LWM.from_pretrained(device=device)
|
98 |
|
99 |
-
|
100 |
-
try:
|
101 |
-
from input_preprocess import tokenizer
|
102 |
-
except ImportError as e:
|
103 |
-
print(f"Error importing tokenizer: {e}")
|
104 |
-
return
|
105 |
|
106 |
-
# Step 6: Load the uploaded .p file (wireless channel matrix)
|
107 |
with open(uploaded_file.name, 'rb') as f:
|
108 |
manual_data = pickle.load(f)
|
109 |
|
110 |
-
# Step 7: Tokenize the data if needed (or perform any necessary preprocessing)
|
111 |
preprocessed_chs = tokenizer(manual_data=manual_data)
|
112 |
|
113 |
-
# Step 8: Perform inference using the model
|
114 |
from inference import lwm_inference, create_raw_dataset
|
115 |
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
|
116 |
output_raw = create_raw_dataset(preprocessed_chs, device)
|
@@ -118,15 +90,13 @@ def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
|
118 |
print(f"Output Embeddings Shape: {output_emb.shape}")
|
119 |
print(f"Output Raw Shape: {output_raw.shape}")
|
120 |
|
121 |
-
# Return the embeddings, raw output, and captured output
|
122 |
return output_emb, output_raw, capture.get_output()
|
123 |
|
124 |
except Exception as e:
|
125 |
-
# Handle exceptions and return the captured output
|
126 |
return str(e), str(e), capture.get_output()
|
127 |
|
128 |
finally:
|
129 |
-
sys.stdout = sys.__stdout__ # Reset
|
130 |
|
131 |
# Function to handle logic based on whether a file is uploaded or not
|
132 |
def los_nlos_classification(file, percentage_idx, complexity_idx):
|
|
|
54 |
def process_p_file(uploaded_file, percentage_idx, complexity_idx):
|
55 |
capture = PrintCapture()
|
56 |
sys.stdout = capture # Redirect print statements to capture
|
57 |
+
|
58 |
try:
|
59 |
model_repo_url = "https://huggingface.co/sadjadalikhani/LWM"
|
60 |
model_repo_dir = "./LWM"
|
61 |
|
|
|
62 |
if not os.path.exists(model_repo_dir):
|
63 |
print(f"Cloning model repository from {model_repo_url}...")
|
64 |
subprocess.run(["git", "clone", model_repo_url, model_repo_dir], check=True)
|
65 |
+
|
|
|
66 |
if os.path.exists(model_repo_dir):
|
67 |
os.chdir(model_repo_dir)
|
68 |
print(f"Changed working directory to {os.getcwd()}")
|
|
|
69 |
else:
|
70 |
+
return f"Directory {model_repo_dir} does not exist."
|
|
|
71 |
|
72 |
+
print("a")
|
73 |
+
from lwm_model import LWM
|
74 |
+
print("b")
|
75 |
+
device = 'cpu'
|
76 |
+
print(f"Loading the LWM model on {device}...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
model = LWM.from_pretrained(device=device)
|
78 |
|
79 |
+
from input_preprocess import tokenizer
|
|
|
|
|
|
|
|
|
|
|
80 |
|
|
|
81 |
with open(uploaded_file.name, 'rb') as f:
|
82 |
manual_data = pickle.load(f)
|
83 |
|
|
|
84 |
preprocessed_chs = tokenizer(manual_data=manual_data)
|
85 |
|
|
|
86 |
from inference import lwm_inference, create_raw_dataset
|
87 |
output_emb = lwm_inference(preprocessed_chs, 'channel_emb', model)
|
88 |
output_raw = create_raw_dataset(preprocessed_chs, device)
|
|
|
90 |
print(f"Output Embeddings Shape: {output_emb.shape}")
|
91 |
print(f"Output Raw Shape: {output_raw.shape}")
|
92 |
|
|
|
93 |
return output_emb, output_raw, capture.get_output()
|
94 |
|
95 |
except Exception as e:
|
|
|
96 |
return str(e), str(e), capture.get_output()
|
97 |
|
98 |
finally:
|
99 |
+
sys.stdout = sys.__stdout__ # Reset print statements
|
100 |
|
101 |
# Function to handle logic based on whether a file is uploaded or not
|
102 |
def los_nlos_classification(file, percentage_idx, complexity_idx):
|