- Is It Good Data for Multilingual Instruction Tuning or Just Bad Multilingual Evaluation for Large Language Models? Large language models, particularly multilingual ones, are designed, claimed, and expected to cater to native speakers of varied languages. We hypothesise that the current practices of fine-tuning and evaluating these models may mismatch this intention owing to a heavy reliance on translation, which can introduce translation artefacts and defects. It remains unknown whether the nature of the instruction data has an impact on the model output; on the other hand, it remains questionable whether translated test sets can capture such nuances. Due to the often coupled practices of using translated data in both stages, such imperfections could have been overlooked. This work investigates these issues by using controlled native or translated data during instruction tuning and evaluation stages and observing model results. Experiments on eight base models and eight different benchmarks reveal that native or generation benchmarks display a notable difference between native and translated instruction data especially when model performance is high, whereas other types of test sets cannot. Finally, we demonstrate that regularization is beneficial to bridging this gap on structured but not generative tasks. 4 authors · Jun 18, 2024
- Multi3WOZ: A Multilingual, Multi-Domain, Multi-Parallel Dataset for Training and Evaluating Culturally Adapted Task-Oriented Dialog Systems Creating high-quality annotated data for task-oriented dialog (ToD) is known to be notoriously difficult, and the challenges are amplified when the goal is to create equitable, culturally adapted, and large-scale ToD datasets for multiple languages. Therefore, the current datasets are still very scarce and suffer from limitations such as translation-based non-native dialogs with translation artefacts, small scale, or lack of cultural adaptation, among others. In this work, we first take stock of the current landscape of multilingual ToD datasets, offering a systematic overview of their properties and limitations. Aiming to reduce all the detected limitations, we then introduce Multi3WOZ, a novel multilingual, multi-domain, multi-parallel ToD dataset. It is large-scale and offers culturally adapted dialogs in 4 languages to enable training and evaluation of multilingual and cross-lingual ToD systems. We describe a complex bottom-up data collection process that yielded the final dataset, and offer the first sets of baseline scores across different ToD-related tasks for future reference, also highlighting its challenging nature. 8 authors · Jul 26, 2023
- BVI-Artefact: An Artefact Detection Benchmark Dataset for Streamed Videos Professionally generated content (PGC) streamed online can contain visual artefacts that degrade the quality of user experience. These artefacts arise from different stages of the streaming pipeline, including acquisition, post-production, compression, and transmission. To better guide streaming experience enhancement, it is important to detect specific artefacts at the user end in the absence of a pristine reference. In this work, we address the lack of a comprehensive benchmark for artefact detection within streamed PGC, via the creation and validation of a large database, BVI-Artefact. Considering the ten most relevant artefact types encountered in video streaming, we collected and generated 480 video sequences, each containing various artefacts with associated binary artefact labels. Based on this new database, existing artefact detection methods are benchmarked, with results showing the challenging nature of this tasks and indicating the requirement of more reliable artefact detection methods. To facilitate further research in this area, we have made BVI-Artifact publicly available at https://chenfeng-bristol.github.io/BVI-Artefact/ 4 authors · Dec 14, 2023
- ARTeFACT: Benchmarking Segmentation Models on Diverse Analogue Media Damage Accurately detecting and classifying damage in analogue media such as paintings, photographs, textiles, mosaics, and frescoes is essential for cultural heritage preservation. While machine learning models excel in correcting degradation if the damage operator is known a priori, we show that they fail to robustly predict where the damage is even after supervised training; thus, reliable damage detection remains a challenge. Motivated by this, we introduce ARTeFACT, a dataset for damage detection in diverse types analogue media, with over 11,000 annotations covering 15 kinds of damage across various subjects, media, and historical provenance. Furthermore, we contribute human-verified text prompts describing the semantic contents of the images, and derive additional textual descriptions of the annotated damage. We evaluate CNN, Transformer, diffusion-based segmentation models, and foundation vision models in zero-shot, supervised, unsupervised and text-guided settings, revealing their limitations in generalising across media types. Our dataset is available at https://daniela997.github.io/ARTeFACT/{https://daniela997.github.io/ARTeFACT/} as the first-of-its-kind benchmark for analogue media damage detection and restoration. 4 authors · Dec 5, 2024
- ArtELingo: A Million Emotion Annotations of WikiArt with Emphasis on Diversity over Language and Culture This paper introduces ArtELingo, a new benchmark and dataset, designed to encourage work on diversity across languages and cultures. Following ArtEmis, a collection of 80k artworks from WikiArt with 0.45M emotion labels and English-only captions, ArtELingo adds another 0.79M annotations in Arabic and Chinese, plus 4.8K in Spanish to evaluate "cultural-transfer" performance. More than 51K artworks have 5 annotations or more in 3 languages. This diversity makes it possible to study similarities and differences across languages and cultures. Further, we investigate captioning tasks, and find diversity improves the performance of baseline models. ArtELingo is publicly available at https://www.artelingo.org/ with standard splits and baseline models. We hope our work will help ease future research on multilinguality and culturally-aware AI. 7 authors · Nov 19, 2022
1 Evaluating Optimal Reference Translations The overall translation quality reached by current machine translation (MT) systems for high-resourced language pairs is remarkably good. Standard methods of evaluation are not suitable nor intended to uncover the many translation errors and quality deficiencies that still persist. Furthermore, the quality of standard reference translations is commonly questioned and comparable quality levels have been reached by MT alone in several language pairs. Navigating further research in these high-resource settings is thus difficult. In this article, we propose a methodology for creating more reliable document-level human reference translations, called "optimal reference translations," with the simple aim to raise the bar of what should be deemed "human translation quality." We evaluate the obtained document-level optimal reference translations in comparison with "standard" ones, confirming a significant quality increase and also documenting the relationship between evaluation and translation editing. 4 authors · Nov 28, 2023
- scb-mt-en-th-2020: A Large English-Thai Parallel Corpus The primary objective of our work is to build a large-scale English-Thai dataset for machine translation. We construct an English-Thai machine translation dataset with over 1 million segment pairs, curated from various sources, namely news, Wikipedia articles, SMS messages, task-based dialogs, web-crawled data and government documents. Methodology for gathering data, building parallel texts and removing noisy sentence pairs are presented in a reproducible manner. We train machine translation models based on this dataset. Our models' performance are comparable to that of Google Translation API (as of May 2020) for Thai-English and outperform Google when the Open Parallel Corpus (OPUS) is included in the training data for both Thai-English and English-Thai translation. The dataset, pre-trained models, and source code to reproduce our work are available for public use. 4 authors · Jul 7, 2020
- FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation, a type of style-targeted translation. The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese. Source documents are selected to enable detailed analysis of phenomena of interest, including lexically distinct terms and distractor terms. We explore automatic evaluation metrics for FRMT and validate their correlation with expert human evaluation across both region-matched and mismatched rating scenarios. Finally, we present a number of baseline models for this task, and offer guidelines for how researchers can train, evaluate, and compare their own models. Our dataset and evaluation code are publicly available: https://bit.ly/frmt-task 8 authors · Oct 1, 2022
- Icelandic Parallel Abstracts Corpus We present a new Icelandic-English parallel corpus, the Icelandic Parallel Abstracts Corpus (IPAC), composed of abstracts from student theses and dissertations. The texts were collected from the Skemman repository which keeps records of all theses, dissertations and final projects from students at Icelandic universities. The corpus was aligned based on sentence-level BLEU scores, in both translation directions, from NMT models using Bleualign. The result is a corpus of 64k sentence pairs from over 6 thousand parallel abstracts. 2 authors · Aug 11, 2021
- Translation Word-Level Auto-Completion: What can we achieve out of the box? Research on Machine Translation (MT) has achieved important breakthroughs in several areas. While there is much more to be done in order to build on this success, we believe that the language industry needs better ways to take full advantage of current achievements. Due to a combination of factors, including time, resources, and skills, businesses tend to apply pragmatism into their AI workflows. Hence, they concentrate more on outcomes, e.g. delivery, shipping, releases, and features, and adopt high-level working production solutions, where possible. Among the features thought to be helpful for translators are sentence-level and word-level translation auto-suggestion and auto-completion. Suggesting alternatives can inspire translators and limit their need to refer to external resources, which hopefully boosts their productivity. This work describes our submissions to WMT's shared task on word-level auto-completion, for the Chinese-to-English, English-to-Chinese, German-to-English, and English-to-German language directions. We investigate the possibility of using pre-trained models and out-of-the-box features from available libraries. We employ random sampling to generate diverse alternatives, which reveals good results. Furthermore, we introduce our open-source API, based on CTranslate2, to serve translations, auto-suggestions, and auto-completions. 3 authors · Oct 23, 2022
2 PHD: Pixel-Based Language Modeling of Historical Documents The digitisation of historical documents has provided historians with unprecedented research opportunities. Yet, the conventional approach to analysing historical documents involves converting them from images to text using OCR, a process that overlooks the potential benefits of treating them as images and introduces high levels of noise. To bridge this gap, we take advantage of recent advancements in pixel-based language models trained to reconstruct masked patches of pixels instead of predicting token distributions. Due to the scarcity of real historical scans, we propose a novel method for generating synthetic scans to resemble real historical documents. We then pre-train our model, PHD, on a combination of synthetic scans and real historical newspapers from the 1700-1900 period. Through our experiments, we demonstrate that PHD exhibits high proficiency in reconstructing masked image patches and provide evidence of our model's noteworthy language understanding capabilities. Notably, we successfully apply our model to a historical QA task, highlighting its usefulness in this domain. 4 authors · Oct 22, 2023
- CUNI Systems for the WMT22 Czech-Ukrainian Translation Task We present Charles University submissions to the WMT22 General Translation Shared Task on Czech-Ukrainian and Ukrainian-Czech machine translation. We present two constrained submissions based on block back-translation and tagged back-translation and experiment with rule-based romanization of Ukrainian. Our results show that the romanization only has a minor effect on the translation quality. Further, we describe Charles Translator, a system that was developed in March 2022 as a response to the migration from Ukraine to the Czech Republic. Compared to our constrained systems, it did not use the romanization and used some proprietary data sources. 3 authors · Dec 1, 2022
10 A Shocking Amount of the Web is Machine Translated: Insights from Multi-Way Parallelism We show that content on the web is often translated into many languages, and the low quality of these multi-way translations indicates they were likely created using Machine Translation (MT). Multi-way parallel, machine generated content not only dominates the translations in lower resource languages; it also constitutes a large fraction of the total web content in those languages. We also find evidence of a selection bias in the type of content which is translated into many languages, consistent with low quality English content being translated en masse into many lower resource languages, via MT. Our work raises serious concerns about training models such as multilingual large language models on both monolingual and bilingual data scraped from the web. 5 authors · Jan 11, 2024
1 Setting up the Data Printer with Improved English to Ukrainian Machine Translation To build large language models for Ukrainian we need to expand our corpora with large amounts of new algorithmic tasks expressed in natural language. Examples of task performance expressed in English are abundant, so with a high-quality translation system our community will be enabled to curate datasets faster. To aid this goal, we introduce a recipe to build a translation system using supervised finetuning of a large pretrained language model with a noisy parallel dataset of 3M pairs of Ukrainian and English sentences followed by a second phase of training using 17K examples selected by k-fold perplexity filtering on another dataset of higher quality. Our decoder-only model named Dragoman beats performance of previous state of the art encoder-decoder models on the FLORES devtest set. 4 authors · Apr 23, 2024
4 Expanding FLORES+ Benchmark for more Low-Resource Settings: Portuguese-Emakhuwa Machine Translation Evaluation As part of the Open Language Data Initiative shared tasks, we have expanded the FLORES+ evaluation set to include Emakhuwa, a low-resource language widely spoken in Mozambique. We translated the dev and devtest sets from Portuguese into Emakhuwa, and we detail the translation process and quality assurance measures used. Our methodology involved various quality checks, including post-editing and adequacy assessments. The resulting datasets consist of multiple reference sentences for each source. We present baseline results from training a Neural Machine Translation system and fine-tuning existing multilingual translation models. Our findings suggest that spelling inconsistencies remain a challenge in Emakhuwa. Additionally, the baseline models underperformed on this evaluation set, underscoring the necessity for further research to enhance machine translation quality for Emakhuwa. The data is publicly available at https://huggingface.co/datasets/LIACC/Emakhuwa-FLORES. 3 authors · Aug 21, 2024 1
- Knowledge-Aware Artifact Image Synthesis with LLM-Enhanced Prompting and Multi-Source Supervision Ancient artifacts are an important medium for cultural preservation and restoration. However, many physical copies of artifacts are either damaged or lost, leaving a blank space in archaeological and historical studies that calls for artifact image generation techniques. Despite the significant advancements in open-domain text-to-image synthesis, existing approaches fail to capture the important domain knowledge presented in the textual description, resulting in errors in recreated images such as incorrect shapes and patterns. In this paper, we propose a novel knowledge-aware artifact image synthesis approach that brings lost historical objects accurately into their visual forms. We use a pretrained diffusion model as backbone and introduce three key techniques to enhance the text-to-image generation framework: 1) we construct prompts with explicit archaeological knowledge elicited from large language models (LLMs); 2) we incorporate additional textual guidance to correlated historical expertise in a contrastive manner; 3) we introduce further visual-semantic constraints on edge and perceptual features that enable our model to learn more intricate visual details of the artifacts. Compared to existing approaches, our proposed model produces higher-quality artifact images that align better with the implicit details and historical knowledge contained within written documents, thus achieving significant improvements across automatic metrics and in human evaluation. Our code and data are available at https://github.com/danielwusg/artifact_diffusion. 3 authors · Dec 13, 2023
- Improving Yorùbá Diacritic Restoration Yor\`ub\'a is a widely spoken West African language with a writing system rich in orthographic and tonal diacritics. They provide morphological information, are crucial for lexical disambiguation, pronunciation and are vital for any computational Speech or Natural Language Processing tasks. However diacritic marks are commonly excluded from electronic texts due to limited device and application support as well as general education on proper usage. We report on recent efforts at dataset cultivation. By aggregating and improving disparate texts from the web and various personal libraries, we were able to significantly grow our clean Yor\`ub\'a dataset from a majority Bibilical text corpora with three sources to millions of tokens from over a dozen sources. We evaluate updated diacritic restoration models on a new, general purpose, public-domain Yor\`ub\'a evaluation dataset of modern journalistic news text, selected to be multi-purpose and reflecting contemporary usage. All pre-trained models, datasets and source-code have been released as an open-source project to advance efforts on Yor\`ub\'a language technology. 7 authors · Mar 23, 2020
- ACES: Translation Accuracy Challenge Sets for Evaluating Machine Translation Metrics As machine translation (MT) metrics improve their correlation with human judgement every year, it is crucial to understand the limitations of such metrics at the segment level. Specifically, it is important to investigate metric behaviour when facing accuracy errors in MT because these can have dangerous consequences in certain contexts (e.g., legal, medical). We curate ACES, a translation accuracy challenge set, consisting of 68 phenomena ranging from simple perturbations at the word/character level to more complex errors based on discourse and real-world knowledge. We use ACES to evaluate a wide range of MT metrics including the submissions to the WMT 2022 metrics shared task and perform several analyses leading to general recommendations for metric developers. We recommend: a) combining metrics with different strengths, b) developing metrics that give more weight to the source and less to surface-level overlap with the reference and c) explicitly modelling additional language-specific information beyond what is available via multilingual embeddings. 3 authors · Oct 27, 2022
- Artifact: Measuring and Mitigating Gaps in Structural Testing The artifact used for evaluating the experimental results of Measuring and Mitigating Gaps in Structural Testing is publicly available on GitHub, Software Heritage and figshare, and is reusable. The artifact consists of necessary data, tools, scripts, and detailed documentation for running the experiments and reproducing the results shown in the paper. We have also provided a VirtualBox VM image allowing users to quickly setup and reproduce the results. Users are expected to be familiar using the VirtualBox software and Linux platform for evaluating or reusing the artifact. 4 authors · Aug 1, 2023
- Development of a New Image-to-text Conversion System for Pashto, Farsi and Traditional Chinese We report upon the results of a research and prototype building project Worldly~OCR dedicated to developing new, more accurate image-to-text conversion software for several languages and writing systems. These include the cursive scripts Farsi and Pashto, and Latin cursive scripts. We also describe approaches geared towards Traditional Chinese, which is non-cursive, but features an extremely large character set of 65,000 characters. Our methodology is based on Machine Learning, especially Deep Learning, and Data Science, and is directed towards vast quantities of original documents, exceeding a billion pages. The target audience of this paper is a general audience with interest in Digital Humanities or in retrieval of accurate full-text and metadata from digital images. 4 authors · May 8, 2020
- Automatic Ranking of MT Outputs using Approximations Since long, research on machine translation has been ongoing. Still, we do not get good translations from MT engines so developed. Manual ranking of these outputs tends to be very time consuming and expensive. Identifying which one is better or worse than the others is a very taxing task. In this paper, we show an approach which can provide automatic ranks to MT outputs (translations) taken from different MT Engines and which is based on N-gram approximations. We provide a solution where no human intervention is required for ranking systems. Further we also show the evaluations of our results which show equivalent results as that of human ranking. 3 authors · Nov 22, 2013
- Improving Access to Justice for the Indian Population: A Benchmark for Evaluating Translation of Legal Text to Indian Languages Most legal text in the Indian judiciary is written in complex English due to historical reasons. However, only about 10% of the Indian population is comfortable in reading English. Hence legal text needs to be made available in various Indian languages, possibly by translating the available legal text from English. Though there has been a lot of research on translation to and between Indian languages, to our knowledge, there has not been much prior work on such translation in the legal domain. In this work, we construct the first high-quality legal parallel corpus containing aligned text units in English and nine Indian languages, that includes several low-resource languages. We also benchmark the performance of a wide variety of Machine Translation (MT) systems over this corpus, including commercial MT systems, open-source MT systems and Large Language Models. Through a comprehensive survey by Law practitioners, we check how satisfied they are with the translations by some of these MT systems, and how well automatic MT evaluation metrics agree with the opinions of Law practitioners. 5 authors · Oct 15, 2023
18 Global MMLU: Understanding and Addressing Cultural and Linguistic Biases in Multilingual Evaluation Cultural biases in multilingual datasets pose significant challenges for their effectiveness as global benchmarks. These biases stem not only from language but also from the cultural knowledge required to interpret questions, reducing the practical utility of translated datasets like MMLU. Furthermore, translation often introduces artifacts that can distort the meaning or clarity of questions in the target language. A common practice in multilingual evaluation is to rely on machine-translated evaluation sets, but simply translating a dataset is insufficient to address these challenges. In this work, we trace the impact of both of these issues on multilingual evaluations and ensuing model performances. Our large-scale evaluation of state-of-the-art open and proprietary models illustrates that progress on MMLU depends heavily on learning Western-centric concepts, with 28% of all questions requiring culturally sensitive knowledge. Moreover, for questions requiring geographic knowledge, an astounding 84.9% focus on either North American or European regions. Rankings of model evaluations change depending on whether they are evaluated on the full portion or the subset of questions annotated as culturally sensitive, showing the distortion to model rankings when blindly relying on translated MMLU. We release Global-MMLU, an improved MMLU with evaluation coverage across 42 languages -- with improved overall quality by engaging with compensated professional and community annotators to verify translation quality while also rigorously evaluating cultural biases present in the original dataset. This comprehensive Global-MMLU set also includes designated subsets labeled as culturally sensitive and culturally agnostic to allow for more holistic, complete evaluation. 23 authors · Dec 4, 2024 2
2 Democratizing Neural Machine Translation with OPUS-MT This paper presents the OPUS ecosystem with a focus on the development of open machine translation models and tools, and their integration into end-user applications, development platforms and professional workflows. We discuss our on-going mission of increasing language coverage and translation quality, and also describe on-going work on the development of modular translation models and speed-optimized compact solutions for real-time translation on regular desktops and small devices. 10 authors · Dec 4, 2022
- ParaNames: A Massively Multilingual Entity Name Corpus We introduce ParaNames, a multilingual parallel name resource consisting of 118 million names spanning across 400 languages. Names are provided for 13.6 million entities which are mapped to standardized entity types (PER/LOC/ORG). Using Wikidata as a source, we create the largest resource of this type to-date. We describe our approach to filtering and standardizing the data to provide the best quality possible. ParaNames is useful for multilingual language processing, both in defining tasks for name translation/transliteration and as supplementary data for tasks such as named entity recognition and linking. We demonstrate an application of ParaNames by training a multilingual model for canonical name translation to and from English. Our resource is released under a Creative Commons license (CC BY 4.0) at https://github.com/bltlab/paranames. 2 authors · Feb 28, 2022
- A Parallel Corpus of Theses and Dissertations Abstracts In Brazil, the governmental body responsible for overseeing and coordinating post-graduate programs, CAPES, keeps records of all theses and dissertations presented in the country. Information regarding such documents can be accessed online in the Theses and Dissertations Catalog (TDC), which contains abstracts in Portuguese and English, and additional metadata. Thus, this database can be a potential source of parallel corpora for the Portuguese and English languages. In this article, we present the development of a parallel corpus from TDC, which is made available by CAPES under the open data initiative. Approximately 240,000 documents were collected and aligned using the Hunalign tool. We demonstrate the capability of our developed corpus by training Statistical Machine Translation (SMT) and Neural Machine Translation (NMT) models for both language directions, followed by a comparison with Google Translate (GT). Both translation models presented better BLEU scores than GT, with NMT system being the most accurate one. Sentence alignment was also manually evaluated, presenting an average of 82.30% correctly aligned sentences. Our parallel corpus is freely available in TMX format, with complementary information regarding document metadata 3 authors · May 5, 2019
- The Tatoeba Translation Challenge -- Realistic Data Sets for Low Resource and Multilingual MT This paper describes the development of a new benchmark for machine translation that provides training and test data for thousands of language pairs covering over 500 languages and tools for creating state-of-the-art translation models from that collection. The main goal is to trigger the development of open translation tools and models with a much broader coverage of the World's languages. Using the package it is possible to work on realistic low-resource scenarios avoiding artificially reduced setups that are common when demonstrating zero-shot or few-shot learning. For the first time, this package provides a comprehensive collection of diverse data sets in hundreds of languages with systematic language and script annotation and data splits to extend the narrow coverage of existing benchmarks. Together with the data release, we also provide a growing number of pre-trained baseline models for individual language pairs and selected language groups. 1 authors · Oct 13, 2020
- Sāmayik: A Benchmark and Dataset for English-Sanskrit Translation We release S\={a}mayik, a dataset of around 53,000 parallel English-Sanskrit sentences, written in contemporary prose. Sanskrit is a classical language still in sustenance and has a rich documented heritage. However, due to the limited availability of digitized content, it still remains a low-resource language. Existing Sanskrit corpora, whether monolingual or bilingual, have predominantly focused on poetry and offer limited coverage of contemporary written materials. S\={a}mayik is curated from a diverse range of domains, including language instruction material, textual teaching pedagogy, and online tutorials, among others. It stands out as a unique resource that specifically caters to the contemporary usage of Sanskrit, with a primary emphasis on prose writing. Translation models trained on our dataset demonstrate statistically significant improvements when translating out-of-domain contemporary corpora, outperforming models trained on older classical-era poetry datasets. Finally, we also release benchmark models by adapting four multilingual pre-trained models, three of them have not been previously exposed to Sanskrit for translating between English and Sanskrit while one of them is multi-lingual pre-trained translation model including English and Sanskrit. The dataset and source code is present at https://github.com/ayushbits/saamayik. 7 authors · May 23, 2023
- Semi-Supervised Low-Resource Style Transfer of Indonesian Informal to Formal Language with Iterative Forward-Translation In its daily use, the Indonesian language is riddled with informality, that is, deviations from the standard in terms of vocabulary, spelling, and word order. On the other hand, current available Indonesian NLP models are typically developed with the standard Indonesian in mind. In this work, we address a style-transfer from informal to formal Indonesian as a low-resource machine translation problem. We build a new dataset of parallel sentences of informal Indonesian and its formal counterpart. We benchmark several strategies to perform style transfer from informal to formal Indonesian. We also explore augmenting the training set with artificial forward-translated data. Since we are dealing with an extremely low-resource setting, we find that a phrase-based machine translation approach outperforms the Transformer-based approach. Alternatively, a pre-trained GPT-2 fined-tuned to this task performed equally well but costs more computational resource. Our findings show a promising step towards leveraging machine translation models for style transfer. Our code and data are available in https://github.com/haryoa/stif-indonesia 7 authors · Nov 6, 2020
- PORTULAN ExtraGLUE Datasets and Models: Kick-starting a Benchmark for the Neural Processing of Portuguese Leveraging research on the neural modelling of Portuguese, we contribute a collection of datasets for an array of language processing tasks and a corresponding collection of fine-tuned neural language models on these downstream tasks. To align with mainstream benchmarks in the literature, originally developed in English, and to kick start their Portuguese counterparts, the datasets were machine-translated from English with a state-of-the-art translation engine. The resulting PORTULAN ExtraGLUE benchmark is a basis for research on Portuguese whose improvement can be pursued in future work. Similarly, the respective fine-tuned neural language models, developed with a low-rank adaptation approach, are made available as baselines that can stimulate future work on the neural processing of Portuguese. All datasets and models have been developed and are made available for two variants of Portuguese: European and Brazilian. 7 authors · Apr 8, 2024
- Towards Cross-Cultural Machine Translation with Retrieval-Augmented Generation from Multilingual Knowledge Graphs Translating text that contains entity names is a challenging task, as cultural-related references can vary significantly across languages. These variations may also be caused by transcreation, an adaptation process that entails more than transliteration and word-for-word translation. In this paper, we address the problem of cross-cultural translation on two fronts: (i) we introduce XC-Translate, the first large-scale, manually-created benchmark for machine translation that focuses on text that contains potentially culturally-nuanced entity names, and (ii) we propose KG-MT, a novel end-to-end method to integrate information from a multilingual knowledge graph into a neural machine translation model by leveraging a dense retrieval mechanism. Our experiments and analyses show that current machine translation systems and large language models still struggle to translate texts containing entity names, whereas KG-MT outperforms state-of-the-art approaches by a large margin, obtaining a 129% and 62% relative improvement compared to NLLB-200 and GPT-4, respectively. 6 authors · Oct 17, 2024
- Dear Sir or Madam, May I introduce the GYAFC Dataset: Corpus, Benchmarks and Metrics for Formality Style Transfer Style transfer is the task of automatically transforming a piece of text in one particular style into another. A major barrier to progress in this field has been a lack of training and evaluation datasets, as well as benchmarks and automatic metrics. In this work, we create the largest corpus for a particular stylistic transfer (formality) and show that techniques from the machine translation community can serve as strong baselines for future work. We also discuss challenges of using automatic metrics. 2 authors · Mar 17, 2018
- Boosting Text-To-Image Generation via Multilingual Prompting in Large Multimodal Models Previous work on augmenting large multimodal models (LMMs) for text-to-image (T2I) generation has focused on enriching the input space of in-context learning (ICL). This includes providing a few demonstrations and optimizing image descriptions to be more detailed and logical. However, as demand for more complex and flexible image descriptions grows, enhancing comprehension of input text within the ICL paradigm remains a critical yet underexplored area. In this work, we extend this line of research by constructing parallel multilingual prompts aimed at harnessing the multilingual capabilities of LMMs. More specifically, we translate the input text into several languages and provide the models with both the original text and the translations. Experiments on two LMMs across 3 benchmarks show that our method, PMT2I, achieves superior performance in general, compositional, and fine-grained assessments, especially in human preference alignment. Additionally, with its advantage of generating more diverse images, PMT2I significantly outperforms baseline prompts when incorporated with reranking methods. Our code and parallel multilingual data can be found at https://github.com/takagi97/PMT2I. 10 authors · Jan 13
1 What Looks Good with my Sofa: Multimodal Search Engine for Interior Design In this paper, we propose a multi-modal search engine for interior design that combines visual and textual queries. The goal of our engine is to retrieve interior objects, e.g. furniture or wall clocks, that share visual and aesthetic similarities with the query. Our search engine allows the user to take a photo of a room and retrieve with a high recall a list of items identical or visually similar to those present in the photo. Additionally, it allows to return other items that aesthetically and stylistically fit well together. To achieve this goal, our system blends the results obtained using textual and visual modalities. Thanks to this blending strategy, we increase the average style similarity score of the retrieved items by 11%. Our work is implemented as a Web-based application and it is planned to be opened to the public. 6 authors · Jul 21, 2017
- Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature. 3 authors · Jul 12, 2021
2 Prompt me a Dataset: An investigation of text-image prompting for historical image dataset creation using foundation models In this paper, we present a pipeline for image extraction from historical documents using foundation models, and evaluate text-image prompts and their effectiveness on humanities datasets of varying levels of complexity. The motivation for this approach stems from the high interest of historians in visual elements printed alongside historical texts on the one hand, and from the relative lack of well-annotated datasets within the humanities when compared to other domains. We propose a sequential approach that relies on GroundDINO and Meta's Segment-Anything-Model (SAM) to retrieve a significant portion of visual data from historical documents that can then be used for downstream development tasks and dataset creation, as well as evaluate the effect of different linguistic prompts on the resulting detections. 2 authors · Sep 4, 2023
- Instruct-Tuning Pretrained Causal Language Models for Ancient Greek Papyrology and Epigraphy This article presents an experiment in fine-tuning a pretrained causal language model (Meta's Llama 3.1 8B Instruct) for aiding in three fundamental tasks of philological research: chronological and geographic attribution as well as text restoration in ancient Greek inscriptions and documentary papyri. Using a prompt-based instruct approach, the fine-tuned models surpass the state of the art in key metrics. For inscriptions, the models achieve a lower average character error rate (CER) of 22.5% (vs. 26.3%), while closely matching top-1 accuracy (60.9% vs. 61.8%) and top-20 accuracy (77.5% vs. 78.3%) for sequences up to 10 characters. They also provide a practical advantage by ignoring spaces during reconstruction, aligning better with the scriptio continua typically used in ancient written artifacts. In geographic attribution, the model outperforms previous benchmarks with a top-1 accuracy of 75.0% (vs. 70.8%) and a top-3 accuracy of 83.7% (vs. 82.1%). For dating, it achieves an average deviation of 26.2 years (vs. 29.3) and a median deviation of 1 year (vs. 3) from the actual date range. The models also set new baselines for documentary papyri, with a CER of 16.3%, a top-1 accuracy of 71.3%, and top-20 of 85.0% in text reconstruction; a top-1 accuracy of 66.4% and top-3 of 79.9% in geographic attribution; and, in chronological attribution, a deviation of 21.7 years from the actual termini post/ante quem, with a median deviation of 0 years. 1 authors · Sep 20, 2024
1 Dialectal and Low Resource Machine Translation for Aromanian We present a neural machine translation system that can translate between Romanian, English, and Aromanian (an endangered Eastern Romance language); the first of its kind. BLEU scores range from 17 to 32 depending on the direction and genre of the text. Alongside, we release the biggest known Aromanian-Romanian bilingual corpus, consisting of 79k cleaned sentence pairs. Additional tools such as an agnostic sentence embedder (used for both text mining and automatic evaluation) and a diacritics converter are also presented. We publicly release our findings and models. Finally, we describe the deployment of our quantized model at https://arotranslate.com. 3 authors · Oct 23, 2024
- Spelling Correction with Denoising Transformer We present a novel method of performing spelling correction on short input strings, such as search queries or individual words. At its core lies a procedure for generating artificial typos which closely follow the error patterns manifested by humans. This procedure is used to train the production spelling correction model based on a transformer architecture. This model is currently served in the HubSpot product search. We show that our approach to typo generation is superior to the widespread practice of adding noise, which ignores human patterns. We also demonstrate how our approach may be extended to resource-scarce settings and train spelling correction models for Arabic, Greek, Russian, and Setswana languages, without using any labeled data. 2 authors · May 12, 2021
- Adapting Multilingual Embedding Models to Historical Luxembourgish The growing volume of digitized historical texts requires effective semantic search using text embeddings. However, pre-trained multilingual models, typically evaluated on contemporary texts, face challenges with historical digitized content due to OCR noise and outdated spellings. We explore the use of multilingual embeddings for cross-lingual semantic search on historical Luxembourgish, a low-resource language. We collect historical Luxembourgish news articles spanning various time periods and use GPT-4o to segment and translate them into closely related languages, creating 20,000 parallel training sentences per language pair. We further create a historical bitext mining evaluation set and find that these models struggle to perform cross-lingual search on historical Luxembourgish. To address this, we propose a simple adaptation method using in-domain training data, achieving up to 98\% accuracy in cross-lingual evaluations. We release our adapted models and historical Luxembourgish-German/French bitexts to support further research. 4 authors · Feb 11
- Translation Errors Significantly Impact Low-Resource Languages in Cross-Lingual Learning Popular benchmarks (e.g., XNLI) used to evaluate cross-lingual language understanding consist of parallel versions of English evaluation sets in multiple target languages created with the help of professional translators. When creating such parallel data, it is critical to ensure high-quality translations for all target languages for an accurate characterization of cross-lingual transfer. In this work, we find that translation inconsistencies do exist and interestingly they disproportionally impact low-resource languages in XNLI. To identify such inconsistencies, we propose measuring the gap in performance between zero-shot evaluations on the human-translated and machine-translated target text across multiple target languages; relatively large gaps are indicative of translation errors. We also corroborate that translation errors exist for two target languages, namely Hindi and Urdu, by doing a manual reannotation of human-translated test instances in these two languages and finding poor agreement with the original English labels these instances were supposed to inherit. 3 authors · Feb 3, 2024 3
- Segmentation of Maya hieroglyphs through fine-tuned foundation models The study of Maya hieroglyphic writing unlocks the rich history of cultural and societal knowledge embedded within this ancient civilization's visual narrative. Artificial Intelligence (AI) offers a novel lens through which we can translate these inscriptions, with the potential to allow non-specialists access to reading these texts and to aid in the decipherment of those hieroglyphs which continue to elude comprehensive interpretation. Toward this, we leverage a foundational model to segment Maya hieroglyphs from an open-source digital library dedicated to Maya artifacts. Despite the initial promise of publicly available foundational segmentation models, their effectiveness in accurately segmenting Maya hieroglyphs was initially limited. Addressing this challenge, our study involved the meticulous curation of image and label pairs with the assistance of experts in Maya art and history, enabling the fine-tuning of these foundational models. This process significantly enhanced model performance, illustrating the potential of fine-tuning approaches and the value of our expanding dataset. We plan to open-source this dataset for encouraging future research, and eventually to help make the hieroglyphic texts legible to a broader community, particularly for Maya heritage community members. 8 authors · May 26, 2024
- Improving the Quality of Neural Machine Translation Through Proper Translation of Name Entities In this paper, we have shown a method of improving the quality of neural machine translation by translating/transliterating name entities as a preprocessing step. Through experiments we have shown the performance gain of our system. For evaluation we considered three types of name entities viz person names, location names and organization names. The system was able to correctly translate mostly all the name entities. For person names the accuracy was 99.86%, for location names the accuracy was 99.63% and for organization names the accuracy was 99.05%. Overall, the accuracy of the system was 99.52% 3 authors · May 12, 2023
3 ParaNames 1.0: Creating an Entity Name Corpus for 400+ Languages using Wikidata We introduce ParaNames, a massively multilingual parallel name resource consisting of 140 million names spanning over 400 languages. Names are provided for 16.8 million entities, and each entity is mapped from a complex type hierarchy to a standard type (PER/LOC/ORG). Using Wikidata as a source, we create the largest resource of this type to date. We describe our approach to filtering and standardizing the data to provide the best quality possible. ParaNames is useful for multilingual language processing, both in defining tasks for name translation/transliteration and as supplementary data for tasks such as named entity recognition and linking. We demonstrate the usefulness of ParaNames on two tasks. First, we perform canonical name translation between English and 17 other languages. Second, we use it as a gazetteer for multilingual named entity recognition, obtaining performance improvements on all 10 languages evaluated. 2 authors · May 15, 2024
- Copyright Violations and Large Language Models Language models may memorize more than just facts, including entire chunks of texts seen during training. Fair use exemptions to copyright laws typically allow for limited use of copyrighted material without permission from the copyright holder, but typically for extraction of information from copyrighted materials, rather than {\em verbatim} reproduction. This work explores the issue of copyright violations and large language models through the lens of verbatim memorization, focusing on possible redistribution of copyrighted text. We present experiments with a range of language models over a collection of popular books and coding problems, providing a conservative characterization of the extent to which language models can redistribute these materials. Overall, this research highlights the need for further examination and the potential impact on future developments in natural language processing to ensure adherence to copyright regulations. Code is at https://github.com/coastalcph/CopyrightLLMs. 4 authors · Oct 20, 2023
- Instruction-Tuned LLMs Succeed in Document-Level MT Without Fine-Tuning -- But BLEU Turns a Blind Eye Large language models (LLMs) have excelled in various NLP tasks, including machine translation (MT), yet most studies focus on sentence-level translation. This work investigates the inherent capability of instruction-tuned LLMs for document-level translation (docMT). Unlike prior approaches that require specialized techniques, we evaluate LLMs by directly prompting them to translate entire documents in a single pass. Our results show that this method improves translation quality compared to translating sentences separately, even without document-level fine-tuning. However, this advantage is not reflected in BLEU scores, which often favor sentence-based translations. We propose using the LLM-as-a-judge paradigm for evaluation, where GPT-4 is used to assess document coherence, accuracy, and fluency in a more nuanced way than n-gram-based metrics. Overall, our work demonstrates that instruction-tuned LLMs can effectively leverage document context for translation. However, we caution against using BLEU scores for evaluating docMT, as they often provide misleading outcomes, failing to capture the quality of document-level translation. Code and data are available at https://github.com/EIT-NLP/BLEUless_DocMT 6 authors · Oct 28, 2024
- Do Language Models Know When They're Hallucinating References? State-of-the-art language models (LMs) are notoriously susceptible to generating hallucinated information. Such inaccurate outputs not only undermine the reliability of these models but also limit their use and raise serious concerns about misinformation and propaganda. In this work, we focus on hallucinated book and article references and present them as the "model organism" of language model hallucination research, due to their frequent and easy-to-discern nature. We posit that if a language model cites a particular reference in its output, then it should ideally possess sufficient information about its authors and content, among other relevant details. Using this basic insight, we illustrate that one can identify hallucinated references without ever consulting any external resources, by asking a set of direct or indirect queries to the language model about the references. These queries can be considered as "consistency checks." Our findings highlight that while LMs, including GPT-4, often produce inconsistent author lists for hallucinated references, they also often accurately recall the authors of real references. In this sense, the LM can be said to "know" when it is hallucinating references. Furthermore, these findings show how hallucinated references can be dissected to shed light on their nature. Replication code and results can be found at https://github.com/microsoft/hallucinated-references. 4 authors · May 29, 2023
- Unsilencing Colonial Archives via Automated Entity Recognition Colonial archives are at the center of increased interest from a variety of perspectives, as they contain traces of historically marginalized people. Unfortunately, like most archives, they remain difficult to access due to significant persisting barriers. We focus here on one of them: the biases to be found in historical findings aids, such as indexes of person names, which remain in use to this day. In colonial archives, indexes can perpetuate silences by omitting to include mentions of historically marginalized persons. In order to overcome such limitations and pluralize the scope of existing finding aids, we propose using automated entity recognition. To this end, we contribute a fit-for-purpose annotation typology and apply it on the colonial archive of the Dutch East India Company (VOC). We release a corpus of nearly 70,000 annotations as a shared task, for which we provide baselines using state-of-the-art neural network models. Our work intends to stimulate further contributions in the direction of broadening access to (colonial) archives, integrating automation as a possible means to this end. 4 authors · Oct 3, 2022
- Understanding the World's Museums through Vision-Language Reasoning Museums serve as vital repositories of cultural heritage and historical artifacts spanning diverse epochs, civilizations, and regions, preserving well-documented collections. Data reveal key attributes such as age, origin, material, and cultural significance. Understanding museum exhibits from their images requires reasoning beyond visual features. In this work, we facilitate such reasoning by (a) collecting and curating a large-scale dataset of 65M images and 200M question-answer pairs in the standard museum catalog format for exhibits from all around the world; (b) training large vision-language models on the collected dataset; (c) benchmarking their ability on five visual question answering tasks. The complete dataset is labeled by museum experts, ensuring the quality as well as the practical significance of the labels. We train two VLMs from different categories: the BLIP model, with vision-language aligned embeddings, but lacking the expressive power of large language models, and the LLaVA model, a powerful instruction-tuned LLM enriched with vision-language reasoning capabilities. Through exhaustive experiments, we provide several insights on the complex and fine-grained understanding of museum exhibits. In particular, we show that some questions whose answers can often be derived directly from visual features are well answered by both types of models. On the other hand, questions that require the grounding of the visual features in repositories of human knowledge are better answered by the large vision-language models, thus demonstrating their superior capacity to perform the desired reasoning. Find our dataset, benchmarks, and source code at: https://github.com/insait-institute/Museum-65 11 authors · Dec 2, 2024
- DOLFIN -- Document-Level Financial test set for Machine Translation Despite the strong research interest in document-level Machine Translation (MT), the test sets dedicated to this task are still scarce. The existing test sets mainly cover topics from the general domain and fall short on specialised domains, such as legal and financial. Also, in spite of their document-level aspect, they still follow a sentence-level logic that does not allow for including certain linguistic phenomena such as information reorganisation. In this work, we aim to fill this gap by proposing a novel test set: DOLFIN. The dataset is built from specialised financial documents, and it makes a step towards true document-level MT by abandoning the paradigm of perfectly aligned sentences, presenting data in units of sections rather than sentences. The test set consists of an average of 1950 aligned sections for five language pairs. We present a detailed data collection pipeline that can serve as inspiration for aligning new document-level datasets. We demonstrate the usefulness and quality of this test set by evaluating a number of models. Our results show that the test set is able to discriminate between context-sensitive and context-agnostic models and shows the weaknesses when models fail to accurately translate financial texts. The test set is made public for the community. 5 authors · Feb 5
- Understanding In-Context Machine Translation for Low-Resource Languages: A Case Study on Manchu In-context machine translation (MT) with large language models (LLMs) is a promising approach for low-resource MT, as it can readily take advantage of linguistic resources such as grammar books and dictionaries. Such resources are usually selectively integrated into the prompt so that LLMs can directly perform translation without any specific training, via their in-context learning capability (ICL). However, the relative importance of each type of resource e.g., dictionary, grammar book, and retrieved parallel examples, is not entirely clear. To address this gap, this study systematically investigates how each resource and its quality affects the translation performance, with the Manchu language as our case study. To remove any prior knowledge of Manchu encoded in the LLM parameters and single out the effect of ICL, we also experiment with an encrypted version of Manchu texts. Our results indicate that high-quality dictionaries and good parallel examples are very helpful, while grammars hardly help. In a follow-up study, we showcase a promising application of in-context MT: parallel data augmentation as a way to bootstrap the conventional MT model. When monolingual data abound, generating synthetic parallel data through in-context MT offers a pathway to mitigate data scarcity and build effective and efficient low-resource neural MT systems. 5 authors · Feb 17
- A Bilingual Parallel Corpus with Discourse Annotations Machine translation (MT) has almost achieved human parity at sentence-level translation. In response, the MT community has, in part, shifted its focus to document-level translation. However, the development of document-level MT systems is hampered by the lack of parallel document corpora. This paper describes BWB, a large parallel corpus first introduced in Jiang et al. (2022), along with an annotated test set. The BWB corpus consists of Chinese novels translated by experts into English, and the annotated test set is designed to probe the ability of machine translation systems to model various discourse phenomena. Our resource is freely available, and we hope it will serve as a guide and inspiration for more work in document-level machine translation. 6 authors · Oct 26, 2022
- Multilingual LAMA: Investigating Knowledge in Multilingual Pretrained Language Models Recently, it has been found that monolingual English language models can be used as knowledge bases. Instead of structural knowledge base queries, masked sentences such as "Paris is the capital of [MASK]" are used as probes. We translate the established benchmarks TREx and GoogleRE into 53 languages. Working with mBERT, we investigate three questions. (i) Can mBERT be used as a multilingual knowledge base? Most prior work only considers English. Extending research to multiple languages is important for diversity and accessibility. (ii) Is mBERT's performance as knowledge base language-independent or does it vary from language to language? (iii) A multilingual model is trained on more text, e.g., mBERT is trained on 104 Wikipedias. Can mBERT leverage this for better performance? We find that using mBERT as a knowledge base yields varying performance across languages and pooling predictions across languages improves performance. Conversely, mBERT exhibits a language bias; e.g., when queried in Italian, it tends to predict Italy as the country of origin. 3 authors · Feb 1, 2021
- The ITU Faroese Pairs Dataset This article documents a dataset of sentence pairs between Faroese and Danish, produced at ITU Copenhagen. The data covers tranlsation from both source languages, and is intended for use as training data for machine translation systems in this language pair. 3 authors · Jun 17, 2022
- Audience-specific Explanations for Machine Translation In machine translation, a common problem is that the translation of certain words even if translated can cause incomprehension of the target language audience due to different cultural backgrounds. A solution to solve this problem is to add explanations for these words. In a first step, we therefore need to identify these words or phrases. In this work we explore techniques to extract example explanations from a parallel corpus. However, the sparsity of sentences containing words that need to be explained makes building the training dataset extremely difficult. In this work, we propose a semi-automatic technique to extract these explanations from a large parallel corpus. Experiments on English->German language pair show that our method is able to extract sentence so that more than 10% of the sentences contain explanation, while only 1.9% of the original sentences contain explanations. In addition, experiments on English->French and English->Chinese language pairs also show similar conclusions. This is therefore an essential first automatic step to create a explanation dataset. Furthermore we show that the technique is robust for all three language pairs. 2 authors · Sep 22, 2023
- Kanbun-LM: Reading and Translating Classical Chinese in Japanese Methods by Language Models Recent studies in natural language processing (NLP) have focused on modern languages and achieved state-of-the-art results in many tasks. Meanwhile, little attention has been paid to ancient texts and related tasks. Classical Chinese first came to Japan approximately 2,000 years ago. It was gradually adapted to a Japanese form called Kanbun-Kundoku (Kanbun) in Japanese reading and translating methods, which has significantly impacted Japanese literature. However, compared to the rich resources for ancient texts in mainland China, Kanbun resources remain scarce in Japan. To solve this problem, we construct the first Classical-Chinese-to-Kanbun dataset in the world. Furthermore, we introduce two tasks, character reordering and machine translation, both of which play a significant role in Kanbun comprehension. We also test the current language models on these tasks and discuss the best evaluation method by comparing the results with human scores. We release our code and dataset on GitHub. 3 authors · May 22, 2023
- Logion: Machine Learning for Greek Philology This paper presents machine-learning methods to address various problems in Greek philology. After training a BERT model on the largest premodern Greek dataset used for this purpose to date, we identify and correct previously undetected errors made by scribes in the process of textual transmission, in what is, to our knowledge, the first successful identification of such errors via machine learning. Additionally, we demonstrate the model's capacity to fill gaps caused by material deterioration of premodern manuscripts and compare the model's performance to that of a domain expert. We find that best performance is achieved when the domain expert is provided with model suggestions for inspiration. With such human-computer collaborations in mind, we explore the model's interpretability and find that certain attention heads appear to encode select grammatical features of premodern Greek. 4 authors · May 1, 2023
1 GEMBA-MQM: Detecting Translation Quality Error Spans with GPT-4 This paper introduces GEMBA-MQM, a GPT-based evaluation metric designed to detect translation quality errors, specifically for the quality estimation setting without the need for human reference translations. Based on the power of large language models (LLM), GEMBA-MQM employs a fixed three-shot prompting technique, querying the GPT-4 model to mark error quality spans. Compared to previous works, our method has language-agnostic prompts, thus avoiding the need for manual prompt preparation for new languages. While preliminary results indicate that GEMBA-MQM achieves state-of-the-art accuracy for system ranking, we advise caution when using it in academic works to demonstrate improvements over other methods due to its dependence on the proprietary, black-box GPT model. 2 authors · Oct 21, 2023
- CNN based Cuneiform Sign Detection Learned from Annotated 3D Renderings and Mapped Photographs with Illumination Augmentation Motivated by the challenges of the Digital Ancient Near Eastern Studies (DANES) community, we develop digital tools for processing cuneiform script being a 3D script imprinted into clay tablets used for more than three millennia and at least eight major languages. It consists of thousands of characters that have changed over time and space. Photographs are the most common representations usable for machine learning, while ink drawings are prone to interpretation. Best suited 3D datasets that are becoming available. We created and used the HeiCuBeDa and MaiCuBeDa datasets, which consist of around 500 annotated tablets. For our novel OCR-like approach to mixed image data, we provide an additional mapping tool for transferring annotations between 3D renderings and photographs. Our sign localization uses a RepPoints detector to predict the locations of characters as bounding boxes. We use image data from GigaMesh's MSII (curvature, see https://gigamesh.eu) based rendering, Phong-shaded 3D models, and photographs as well as illumination augmentation. The results show that using rendered 3D images for sign detection performs better than other work on photographs. In addition, our approach gives reasonably good results for photographs only, while it is best used for mixed datasets. More importantly, the Phong renderings, and especially the MSII renderings, improve the results on photographs, which is the largest dataset on a global scale. 3 authors · Aug 22, 2023
2 Larth: Dataset and Machine Translation for Etruscan Etruscan is an ancient language spoken in Italy from the 7th century BC to the 1st century AD. There are no native speakers of the language at the present day, and its resources are scarce, as there exist only around 12,000 known inscriptions. To the best of our knowledge, there are no publicly available Etruscan corpora for natural language processing. Therefore, we propose a dataset for machine translation from Etruscan to English, which contains 2891 translated examples from existing academic sources. Some examples are extracted manually, while others are acquired in an automatic way. Along with the dataset, we benchmark different machine translation models observing that it is possible to achieve a BLEU score of 10.1 with a small transformer model. Releasing the dataset can help enable future research on this language, similar languages or other languages with scarce resources. 2 authors · Oct 9, 2023
- Impact of Corpora Quality on Neural Machine Translation Large parallel corpora that are automatically obtained from the web, documents or elsewhere often exhibit many corrupted parts that are bound to negatively affect the quality of the systems and models that learn from these corpora. This paper describes frequent problems found in data and such data affects neural machine translation systems, as well as how to identify and deal with them. The solutions are summarised in a set of scripts that remove problematic sentences from input corpora. 1 authors · Oct 19, 2018
- Recovering document annotations for sentence-level bitext Data availability limits the scope of any given task. In machine translation, historical models were incapable of handling longer contexts, so the lack of document-level datasets was less noticeable. Now, despite the emergence of long-sequence methods, we remain within a sentence-level paradigm and without data to adequately approach context-aware machine translation. Most large-scale datasets have been processed through a pipeline that discards document-level metadata. In this work, we reconstruct document-level information for three (ParaCrawl, News Commentary, and Europarl) large datasets in German, French, Spanish, Italian, Polish, and Portuguese (paired with English). We then introduce a document-level filtering technique as an alternative to traditional bitext filtering. We present this filtering with analysis to show that this method prefers context-consistent translations rather than those that may have been sentence-level machine translated. Last we train models on these longer contexts and demonstrate improvement in document-level translation without degradation of sentence-level translation. We release our dataset, ParaDocs, and resulting models as a resource to the community. 3 authors · Jun 6, 2024
- Machine Translation Meta Evaluation through Translation Accuracy Challenge Sets Recent machine translation (MT) metrics calibrate their effectiveness by correlating with human judgement but without any insights about their behaviour across different error types. Challenge sets are used to probe specific dimensions of metric behaviour but there are very few such datasets and they either focus on a limited number of phenomena or a limited number of language pairs. We introduce ACES, a contrastive challenge set spanning 146 language pairs, aimed at discovering whether metrics can identify 68 translation accuracy errors. These phenomena range from simple alterations at the word/character level to more complex errors based on discourse and real-world knowledge. We conduct a large-scale study by benchmarking ACES on 50 metrics submitted to the WMT 2022 and 2023 metrics shared tasks. We benchmark metric performance, assess their incremental performance over successive campaigns, and measure their sensitivity to a range of linguistic phenomena. We also investigate claims that Large Language Models (LLMs) are effective as MT evaluators by evaluating on ACES. Our results demonstrate that different metric families struggle with different phenomena and that LLM-based methods fail to demonstrate reliable performance. Our analyses indicate that most metrics ignore the source sentence, tend to prefer surface-level overlap and end up incorporating properties of base models which are not always beneficial. We expand ACES to include error span annotations, denoted as SPAN-ACES and we use this dataset to evaluate span-based error metrics showing these metrics also need considerable improvement. Finally, we provide a set of recommendations for building better MT metrics, including focusing on error labels instead of scores, ensembling, designing strategies to explicitly focus on the source sentence, focusing on semantic content and choosing the right base model for representations. 8 authors · Jan 29, 2024
- MultiSubs: A Large-scale Multimodal and Multilingual Dataset This paper introduces a large-scale multimodal and multilingual dataset that aims to facilitate research on grounding words to images in their contextual usage in language. The dataset consists of images selected to unambiguously illustrate concepts expressed in sentences from movie subtitles. The dataset is a valuable resource as (i) the images are aligned to text fragments rather than whole sentences; (ii) multiple images are possible for a text fragment and a sentence; (iii) the sentences are free-form and real-world like; (iv) the parallel texts are multilingual. We set up a fill-in-the-blank game for humans to evaluate the quality of the automatic image selection process of our dataset. We show the utility of the dataset on two automatic tasks: (i) fill-in-the-blank; (ii) lexical translation. Results of the human evaluation and automatic models demonstrate that images can be a useful complement to the textual context. The dataset will benefit research on visual grounding of words especially in the context of free-form sentences, and can be obtained from https://doi.org/10.5281/zenodo.5034604 under a Creative Commons licence. 5 authors · Mar 2, 2021
- PatentMatch: A Dataset for Matching Patent Claims & Prior Art Patent examiners need to solve a complex information retrieval task when they assess the novelty and inventive step of claims made in a patent application. Given a claim, they search for prior art, which comprises all relevant publicly available information. This time-consuming task requires a deep understanding of the respective technical domain and the patent-domain-specific language. For these reasons, we address the computer-assisted search for prior art by creating a training dataset for supervised machine learning called PatentMatch. It contains pairs of claims from patent applications and semantically corresponding text passages of different degrees from cited patent documents. Each pair has been labeled by technically-skilled patent examiners from the European Patent Office. Accordingly, the label indicates the degree of semantic correspondence (matching), i.e., whether the text passage is prejudicial to the novelty of the claimed invention or not. Preliminary experiments using a baseline system show that PatentMatch can indeed be used for training a binary text pair classifier on this challenging information retrieval task. The dataset is available online: https://hpi.de/naumann/s/patentmatch. 4 authors · Dec 27, 2020
2 First Tragedy, then Parse: History Repeats Itself in the New Era of Large Language Models Many NLP researchers are experiencing an existential crisis triggered by the astonishing success of ChatGPT and other systems based on large language models (LLMs). After such a disruptive change to our understanding of the field, what is left to do? Taking a historical lens, we look for guidance from the first era of LLMs, which began in 2005 with large n-gram models for machine translation. We identify durable lessons from the first era, and more importantly, we identify evergreen problems where NLP researchers can continue to make meaningful contributions in areas where LLMs are ascendant. Among these lessons, we discuss the primacy of hardware advancement in shaping the availability and importance of scale, as well as the urgent challenge of quality evaluation, both automated and human. We argue that disparities in scale are transient and that researchers can work to reduce them; that data, rather than hardware, is still a bottleneck for many meaningful applications; that meaningful evaluation informed by actual use is still an open problem; and that there is still room for speculative approaches. 4 authors · Nov 8, 2023
- Dialogs Re-enacted Across Languages To support machine learning of cross-language prosodic mappings and other ways to improve speech-to-speech translation, we present a protocol for collecting closely matched pairs of utterances across languages, a description of the resulting data collection and its public release, and some observations and musings. This report is intended for: people using this corpus, people extending this corpus, and people designing similar collections of bilingual dialog data. 4 authors · Nov 18, 2022
- Connecting a French Dictionary from the Beginning of the 20th Century to Wikidata The Petit Larousse illustr\'e is a French dictionary first published in 1905. Its division in two main parts on language and on history and geography corresponds to a major milestone in French lexicography as well as a repository of general knowledge from this period. Although the value of many entries from 1905 remains intact, some descriptions now have a dimension that is more historical than contemporary. They are nonetheless significant to analyze and understand cultural representations from this time. A comparison with more recent information or a verification of these entries would require a tedious manual work. In this paper, we describe a new lexical resource, where we connected all the dictionary entries of the history and geography part to current data sources. For this, we linked each of these entries to a wikidata identifier. Using the wikidata links, we can automate more easily the identification, comparison, and verification of historically-situated representations. We give a few examples on how to process wikidata identifiers and we carried out a small analysis of the entities described in the dictionary to outline possible applications. The resource, i.e. the annotation of 20,245 dictionary entries with wikidata links, is available from GitHub url{https://github.com/pnugues/petit_larousse_1905/ 1 authors · Jun 22, 2022
- Sequence-to-Sequence Resources for Catalan In this work, we introduce sequence-to-sequence language resources for Catalan, a moderately under-resourced language, towards two tasks, namely: Summarization and Machine Translation (MT). We present two new abstractive summarization datasets in the domain of newswire. We also introduce a parallel Catalan-English corpus, paired with three different brand new test sets. Finally, we evaluate the data presented with competing state of the art models, and we develop baselines for these tasks using a newly created Catalan BART. We release the resulting resources of this work under open license to encourage the development of language technology in Catalan. 5 authors · Feb 14, 2022
- Prompting Large Language Model for Machine Translation: A Case Study Research on prompting has shown excellent performance with little or even no supervised training across many tasks. However, prompting for machine translation is still under-explored in the literature. We fill this gap by offering a systematic study on prompting strategies for translation, examining various factors for prompt template and demonstration example selection. We further explore the use of monolingual data and the feasibility of cross-lingual, cross-domain, and sentence-to-document transfer learning in prompting. Extensive experiments with GLM-130B (Zeng et al., 2022) as the testbed show that 1) the number and the quality of prompt examples matter, where using suboptimal examples degenerates translation; 2) several features of prompt examples, such as semantic similarity, show significant Spearman correlation with their prompting performance; yet, none of the correlations are strong enough; 3) using pseudo parallel prompt examples constructed from monolingual data via zero-shot prompting could improve translation; and 4) improved performance is achievable by transferring knowledge from prompt examples selected in other settings. We finally provide an analysis on the model outputs and discuss several problems that prompting still suffers from. 3 authors · Jan 17, 2023
- μgat: Improving Single-Page Document Parsing by Providing Multi-Page Context Regesta are catalogs of summaries of other documents and, in some cases, are the only source of information about the content of such full-length documents. For this reason, they are of great interest to scholars in many social and humanities fields. In this work, we focus on Regesta Pontificum Romanum, a large collection of papal registers. Regesta are visually rich documents, where the layout is as important as the text content to convey the contained information through the structure, and are inherently multi-page documents. Among Digital Humanities techniques that can help scholars efficiently exploit regesta and other documental sources in the form of scanned documents, Document Parsing has emerged as a task to process document images and convert them into machine-readable structured representations, usually markup language. However, current models focus on scientific and business documents, and most of them consider only single-paged documents. To overcome this limitation, in this work, we propose {\mu}gat, an extension of the recently proposed Document parsing Nougat architecture, which can handle elements spanning over the single page limits. Specifically, we adapt Nougat to process a larger, multi-page context, consisting of the previous and the following page, while parsing the current page. Experimental results, both qualitative and quantitative, demonstrate the effectiveness of our proposed approach also in the case of the challenging Regesta Pontificum Romanorum. 5 authors · Aug 28, 2024
- Challenges and Considerations in Annotating Legal Data: A Comprehensive Overview The process of annotating data within the legal sector is filled with distinct challenges that differ from other fields, primarily due to the inherent complexities of legal language and documentation. The initial task usually involves selecting an appropriate raw dataset that captures the intricate aspects of legal texts. Following this, extracting text becomes a complicated task, as legal documents often have complex structures, footnotes, references, and unique terminology. The importance of data cleaning is magnified in this context, ensuring that redundant information is eliminated while maintaining crucial legal details and context. Creating comprehensive yet straightforward annotation guidelines is imperative, as these guidelines serve as the road map for maintaining uniformity and addressing the subtle nuances of legal terminology. Another critical aspect is the involvement of legal professionals in the annotation process. Their expertise is valuable in ensuring that the data not only remains contextually accurate but also adheres to prevailing legal standards and interpretations. This paper provides an expanded view of these challenges and aims to offer a foundational understanding and guidance for researchers and professionals engaged in legal data annotation projects. In addition, we provide links to our created and fine-tuned datasets and language models. These resources are outcomes of our discussed projects and solutions to challenges faced while working on them. 3 authors · Jul 5, 2024
- UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language We present a corpus professionally annotated for grammatical error correction (GEC) and fluency edits in the Ukrainian language. To the best of our knowledge, this is the first GEC corpus for the Ukrainian language. We collected texts with errors (20,715 sentences) from a diverse pool of contributors, including both native and non-native speakers. The data cover a wide variety of writing domains, from text chats and essays to formal writing. Professional proofreaders corrected and annotated the corpus for errors relating to fluency, grammar, punctuation, and spelling. This corpus can be used for developing and evaluating GEC systems in Ukrainian. More generally, it can be used for researching multilingual and low-resource NLP, morphologically rich languages, document-level GEC, and fluency correction. The corpus is publicly available at https://github.com/grammarly/ua-gec 2 authors · Mar 31, 2021
- Crossroads of Continents: Automated Artifact Extraction for Cultural Adaptation with Large Multimodal Models In this work, we present a comprehensive three-phase study to examine (1) the effectiveness of large multimodal models (LMMs) in recognizing cultural contexts; (2) the accuracy of their representations of diverse cultures; and (3) their ability to adapt content across cultural boundaries. We first introduce Dalle Street, a large-scale dataset generated by DALL-E 3 and validated by humans, containing 9,935 images of 67 countries and 10 concept classes. We reveal disparities in cultural understanding at the sub-region level with both open-weight (LLaVA) and closed-source (GPT-4V) models on Dalle Street and other existing benchmarks. Next, we assess models' deeper culture understanding by an artifact extraction task and identify over 18,000 artifacts associated with different countries. Finally, we propose a highly composable pipeline, CultureAdapt, to adapt images from culture to culture. Our findings reveal a nuanced picture of the cultural competence of LMMs, highlighting the need to develop culture-aware systems. Dataset and code are available at https://github.com/iamshnoo/crossroads 3 authors · Jul 2, 2024
- Documenting Geographically and Contextually Diverse Data Sources: The BigScience Catalogue of Language Data and Resources In recent years, large-scale data collection efforts have prioritized the amount of data collected in order to improve the modeling capabilities of large language models. This prioritization, however, has resulted in concerns with respect to the rights of data subjects represented in data collections, particularly when considering the difficulty in interrogating these collections due to insufficient documentation and tools for analysis. Mindful of these pitfalls, we present our methodology for a documentation-first, human-centered data collection project as part of the BigScience initiative. We identified a geographically diverse set of target language groups (Arabic, Basque, Chinese, Catalan, English, French, Indic languages, Indonesian, Niger-Congo languages, Portuguese, Spanish, and Vietnamese, as well as programming languages) for which to collect metadata on potential data sources. To structure this effort, we developed our online catalogue as a supporting tool for gathering metadata through organized public hackathons. We present our development process; analyses of the resulting resource metadata, including distributions over languages, regions, and resource types; and our lessons learned in this endeavor. 18 authors · Jan 24, 2022
5 MIT-10M: A Large Scale Parallel Corpus of Multilingual Image Translation Image Translation (IT) holds immense potential across diverse domains, enabling the translation of textual content within images into various languages. However, existing datasets often suffer from limitations in scale, diversity, and quality, hindering the development and evaluation of IT models. To address this issue, we introduce MIT-10M, a large-scale parallel corpus of multilingual image translation with over 10M image-text pairs derived from real-world data, which has undergone extensive data cleaning and multilingual translation validation. It contains 840K images in three sizes, 28 categories, tasks with three levels of difficulty and 14 languages image-text pairs, which is a considerable improvement on existing datasets. We conduct extensive experiments to evaluate and train models on MIT-10M. The experimental results clearly indicate that our dataset has higher adaptability when it comes to evaluating the performance of the models in tackling challenging and complex image translation tasks in the real world. Moreover, the performance of the model fine-tuned with MIT-10M has tripled compared to the baseline model, further confirming its superiority. 3 authors · Dec 9, 2024 2
- MorisienMT: A Dataset for Mauritian Creole Machine Translation In this paper, we describe MorisienMT, a dataset for benchmarking machine translation quality of Mauritian Creole. Mauritian Creole (Morisien) is the lingua franca of the Republic of Mauritius and is a French-based creole language. MorisienMT consists of a parallel corpus between English and Morisien, French and Morisien and a monolingual corpus for Morisien. We first give an overview of Morisien and then describe the steps taken to create the corpora and, from it, the training and evaluation splits. Thereafter, we establish a variety of baseline models using the created parallel corpora as well as large French--English corpora for transfer learning. We release our datasets publicly for research purposes and hope that this spurs research for Morisien machine translation. 2 authors · Jun 6, 2022
- Beyond Correlation: Interpretable Evaluation of Machine Translation Metrics Machine Translation (MT) evaluation metrics assess translation quality automatically. Recently, researchers have employed MT metrics for various new use cases, such as data filtering and translation re-ranking. However, most MT metrics return assessments as scalar scores that are difficult to interpret, posing a challenge to making informed design choices. Moreover, MT metrics' capabilities have historically been evaluated using correlation with human judgment, which, despite its efficacy, falls short of providing intuitive insights into metric performance, especially in terms of new metric use cases. To address these issues, we introduce an interpretable evaluation framework for MT metrics. Within this framework, we evaluate metrics in two scenarios that serve as proxies for the data filtering and translation re-ranking use cases. Furthermore, by measuring the performance of MT metrics using Precision, Recall, and F-score, we offer clearer insights into their capabilities than correlation with human judgments. Finally, we raise concerns regarding the reliability of manually curated data following the Direct Assessments+Scalar Quality Metrics (DA+SQM) guidelines, reporting a notably low agreement with Multidimensional Quality Metrics (MQM) annotations. 5 authors · Oct 7, 2024
- Navigating Cultural Chasms: Exploring and Unlocking the Cultural POV of Text-To-Image Models Text-To-Image (TTI) models, such as DALL-E and StableDiffusion, have demonstrated remarkable prompt-based image generation capabilities. Multilingual encoders may have a substantial impact on the cultural agency of these models, as language is a conduit of culture. In this study, we explore the cultural perception embedded in TTI models by characterizing culture across three hierarchical tiers: cultural dimensions, cultural domains, and cultural concepts. Based on this ontology, we derive prompt templates to unlock the cultural knowledge in TTI models, and propose a comprehensive suite of evaluation techniques, including intrinsic evaluations using the CLIP space, extrinsic evaluations with a Visual-Question-Answer (VQA) model and human assessments, to evaluate the cultural content of TTI-generated images. To bolster our research, we introduce the CulText2I dataset, derived from six diverse TTI models and spanning ten languages. Our experiments provide insights regarding Do, What, Which and How research questions about the nature of cultural encoding in TTI models, paving the way for cross-cultural applications of these models. 4 authors · Oct 3, 2023
- Personalized Machine Translation: Preserving Original Author Traits The language that we produce reflects our personality, and various personal and demographic characteristics can be detected in natural language texts. We focus on one particular personal trait of the author, gender, and study how it is manifested in original texts and in translations. We show that author's gender has a powerful, clear signal in originals texts, but this signal is obfuscated in human and machine translation. We then propose simple domain-adaptation techniques that help retain the original gender traits in the translation, without harming the quality of the translation, thereby creating more personalized machine translation systems. 5 authors · Oct 18, 2016
- Translation Quality Assessment: A Brief Survey on Manual and Automatic Methods To facilitate effective translation modeling and translation studies, one of the crucial questions to address is how to assess translation quality. From the perspectives of accuracy, reliability, repeatability and cost, translation quality assessment (TQA) itself is a rich and challenging task. In this work, we present a high-level and concise survey of TQA methods, including both manual judgement criteria and automated evaluation metrics, which we classify into further detailed sub-categories. We hope that this work will be an asset for both translation model researchers and quality assessment researchers. In addition, we hope that it will enable practitioners to quickly develop a better understanding of the conventional TQA field, and to find corresponding closely relevant evaluation solutions for their own needs. This work may also serve inspire further development of quality assessment and evaluation methodologies for other natural language processing (NLP) tasks in addition to machine translation (MT), such as automatic text summarization (ATS), natural language understanding (NLU) and natural language generation (NLG). 3 authors · May 5, 2021
21 ATHAR: A High-Quality and Diverse Dataset for Classical Arabic to English Translation Classical Arabic represents a significant era, encompassing the golden age of Arab culture, philosophy, and scientific literature. With a broad consensus on the importance of translating these literatures to enrich knowledge dissemination across communities, the advent of large language models (LLMs) and translation systems offers promising tools to facilitate this goal. However, we have identified a scarcity of translation datasets in Classical Arabic, which are often limited in scope and topics, hindering the development of high-quality translation systems. In response, we present the ATHAR dataset, comprising 66,000 high-quality Classical Arabic to English translation samples that cover a wide array of subjects including science, culture, and philosophy. Furthermore, we assess the performance of current state-of-the-art LLMs under various settings, concluding that there is a need for such datasets in current systems. Our findings highlight how models can benefit from fine-tuning or incorporating this dataset into their pretraining pipelines. The dataset is publicly available on the HuggingFace Data Hub at https://huggingface.co/datasets/mohamed-khalil/ATHAR. 2 authors · Jul 29, 2024 1
3 SwiLTra-Bench: The Swiss Legal Translation Benchmark In Switzerland legal translation is uniquely important due to the country's four official languages and requirements for multilingual legal documentation. However, this process traditionally relies on professionals who must be both legal experts and skilled translators -- creating bottlenecks and impacting effective access to justice. To address this challenge, we introduce SwiLTra-Bench, a comprehensive multilingual benchmark of over 180K aligned Swiss legal translation pairs comprising laws, headnotes, and press releases across all Swiss languages along with English, designed to evaluate LLM-based translation systems. Our systematic evaluation reveals that frontier models achieve superior translation performance across all document types, while specialized translation systems excel specifically in laws but under-perform in headnotes. Through rigorous testing and human expert validation, we demonstrate that while fine-tuning open SLMs significantly improves their translation quality, they still lag behind the best zero-shot prompted frontier models such as Claude-3.5-Sonnet. Additionally, we present SwiLTra-Judge, a specialized LLM evaluation system that aligns best with human expert assessments. 19 authors · Mar 3 2
- mMARCO: A Multilingual Version of the MS MARCO Passage Ranking Dataset The MS MARCO ranking dataset has been widely used for training deep learning models for IR tasks, achieving considerable effectiveness on diverse zero-shot scenarios. However, this type of resource is scarce in languages other than English. In this work, we present mMARCO, a multilingual version of the MS MARCO passage ranking dataset comprising 13 languages that was created using machine translation. We evaluated mMARCO by finetuning monolingual and multilingual reranking models, as well as a multilingual dense retrieval model on this dataset. We also evaluated models finetuned using the mMARCO dataset in a zero-shot scenario on Mr. TyDi dataset, demonstrating that multilingual models finetuned on our translated dataset achieve superior effectiveness to models finetuned on the original English version alone. Our experiments also show that a distilled multilingual reranker is competitive with non-distilled models while having 5.4 times fewer parameters. Lastly, we show a positive correlation between translation quality and retrieval effectiveness, providing evidence that improvements in translation methods might lead to improvements in multilingual information retrieval. The translated datasets and finetuned models are available at https://github.com/unicamp-dl/mMARCO. 7 authors · Aug 31, 2021
- Historical Ink: 19th Century Latin American Spanish Newspaper Corpus with LLM OCR Correction This paper presents two significant contributions: first, a novel dataset of 19th-century Latin American press texts, which addresses the lack of specialized corpora for historical and linguistic analysis in this region. Second, it introduces a framework for OCR error correction and linguistic surface form detection in digitized corpora, utilizing a Large Language Model. This framework is adaptable to various contexts and, in this paper, is specifically applied to the newly created dataset. 3 authors · Jul 3, 2024
1 Kuaipedia: a Large-scale Multi-modal Short-video Encyclopedia Online encyclopedias, such as Wikipedia, have been well-developed and researched in the last two decades. One can find any attributes or other information of a wiki item on a wiki page edited by a community of volunteers. However, the traditional text, images and tables can hardly express some aspects of an wiki item. For example, when we talk about ``Shiba Inu'', one may care more about ``How to feed it'' or ``How to train it not to protect its food''. Currently, short-video platforms have become a hallmark in the online world. Whether you're on TikTok, Instagram, Kuaishou, or YouTube Shorts, short-video apps have changed how we consume and create content today. Except for producing short videos for entertainment, we can find more and more authors sharing insightful knowledge widely across all walks of life. These short videos, which we call knowledge videos, can easily express any aspects (e.g. hair or how-to-feed) consumers want to know about an item (e.g. Shiba Inu), and they can be systematically analyzed and organized like an online encyclopedia. In this paper, we propose Kuaipedia, a large-scale multi-modal encyclopedia consisting of items, aspects, and short videos lined to them, which was extracted from billions of videos of Kuaishou (Kwai), a well-known short-video platform in China. We first collected items from multiple sources and mined user-centered aspects from millions of users' queries to build an item-aspect tree. Then we propose a new task called ``multi-modal item-aspect linking'' as an expansion of ``entity linking'' to link short videos into item-aspect pairs and build the whole short-video encyclopedia. Intrinsic evaluations show that our encyclopedia is of large scale and highly accurate. We also conduct sufficient extrinsic experiments to show how Kuaipedia can help fundamental applications such as entity typing and entity linking. 8 authors · Oct 28, 2022
- Hallucinations in Large Multilingual Translation Models Large-scale multilingual machine translation systems have demonstrated remarkable ability to translate directly between numerous languages, making them increasingly appealing for real-world applications. However, when deployed in the wild, these models may generate hallucinated translations which have the potential to severely undermine user trust and raise safety concerns. Existing research on hallucinations has primarily focused on small bilingual models trained on high-resource languages, leaving a gap in our understanding of hallucinations in massively multilingual models across diverse translation scenarios. In this work, we fill this gap by conducting a comprehensive analysis on both the M2M family of conventional neural machine translation models and ChatGPT, a general-purpose large language model~(LLM) that can be prompted for translation. Our investigation covers a broad spectrum of conditions, spanning over 100 translation directions across various resource levels and going beyond English-centric language pairs. We provide key insights regarding the prevalence, properties, and mitigation of hallucinations, paving the way towards more responsible and reliable machine translation systems. 7 authors · Mar 28, 2023
1 Clinical Document Corpora and Assorted Domain Proxies: A Survey of Diversity in Corpus Design, with Focus on German Text Data We survey clinical document corpora, with focus on German textual data. Due to rigid data privacy legislation in Germany these resources, with only few exceptions, are stored in safe clinical data spaces and locked against clinic-external researchers. This situation stands in stark contrast with established workflows in the field of natural language processing where easy accessibility and reuse of data collections are common practice. Hence, alternative corpus designs have been examined to escape from this data poverty. Besides machine translation of English clinical datasets and the generation of synthetic corpora with fictitious clinical contents, several other types of domain proxies have come up as substitutes for authentic clinical documents. Common instances of close proxies are medical journal publications, clinical therapy guidelines, drug labels, etc., more distant proxies include online encyclopedic medical articles or medical contents from social media channels. After PRISM-conformant screening of 359 hits from four bibliographic systems, 75 relevant documents were finally selected for this review and 59 distinct corpora were determined. We identified 24 real clinical corpora (from 40 publications) out of which only 5 are publicly distributable. 2 translations of real corpora and 3 synthetic ones complement the set of clinical corpora. 14 corpora were categorized as close domain proxies, 16 as distant ones. There is a clear divide between the large number of non-accessible authentic clinical German-language corpora and their publicly accessible substitutes: translated or synthetic, close or more distant proxies. So on first sight, the data bottleneck seems broken. Intuitively yet, differences in genre-specific writing style, wording and medical domain expertise in this typological space are also obvious. This raises the question how valid alternative corpus designs really are. 1 authors · Nov 29, 2024
- Named Entity Recognition and Classification on Historical Documents: A Survey After decades of massive digitisation, an unprecedented amount of historical documents is available in digital format, along with their machine-readable texts. While this represents a major step forward with respect to preservation and accessibility, it also opens up new opportunities in terms of content mining and the next fundamental challenge is to develop appropriate technologies to efficiently search, retrieve and explore information from this 'big data of the past'. Among semantic indexing opportunities, the recognition and classification of named entities are in great demand among humanities scholars. Yet, named entity recognition (NER) systems are heavily challenged with diverse, historical and noisy inputs. In this survey, we present the array of challenges posed by historical documents to NER, inventory existing resources, describe the main approaches deployed so far, and identify key priorities for future developments. 5 authors · Sep 23, 2021
1 KoBE: Knowledge-Based Machine Translation Evaluation We propose a simple and effective method for machine translation evaluation which does not require reference translations. Our approach is based on (1) grounding the entity mentions found in each source sentence and candidate translation against a large-scale multilingual knowledge base, and (2) measuring the recall of the grounded entities found in the candidate vs. those found in the source. Our approach achieves the highest correlation with human judgements on 9 out of the 18 language pairs from the WMT19 benchmark for evaluation without references, which is the largest number of wins for a single evaluation method on this task. On 4 language pairs, we also achieve higher correlation with human judgements than BLEU. To foster further research, we release a dataset containing 1.8 million grounded entity mentions across 18 language pairs from the WMT19 metrics track data. 5 authors · Sep 23, 2020
- Meta4XNLI: A Crosslingual Parallel Corpus for Metaphor Detection and Interpretation Metaphors, although occasionally unperceived, are ubiquitous in our everyday language. Thus, it is crucial for Language Models to be able to grasp the underlying meaning of this kind of figurative language. In this work, we present Meta4XNLI, a novel parallel dataset for the tasks of metaphor detection and interpretation that contains metaphor annotations in both Spanish and English. We investigate language models' metaphor identification and understanding abilities through a series of monolingual and cross-lingual experiments by leveraging our proposed corpus. In order to comprehend how these non-literal expressions affect models' performance, we look over the results and perform an error analysis. Additionally, parallel data offers many potential opportunities to investigate metaphor transferability between these languages and the impact of translation on the development of multilingual annotated resources. 2 authors · Apr 10, 2024 1
- Facebook FAIR's WMT19 News Translation Task Submission This paper describes Facebook FAIR's submission to the WMT19 shared news translation task. We participate in two language pairs and four language directions, English <-> German and English <-> Russian. Following our submission from last year, our baseline systems are large BPE-based transformer models trained with the Fairseq sequence modeling toolkit which rely on sampled back-translations. This year we experiment with different bitext data filtering schemes, as well as with adding filtered back-translated data. We also ensemble and fine-tune our models on domain-specific data, then decode using noisy channel model reranking. Our submissions are ranked first in all four directions of the human evaluation campaign. On En->De, our system significantly outperforms other systems as well as human translations. This system improves upon our WMT'18 submission by 4.5 BLEU points. 6 authors · Jul 15, 2019
- The FLoRes Evaluation Datasets for Low-Resource Machine Translation: Nepali-English and Sinhala-English For machine translation, a vast majority of language pairs in the world are considered low-resource because they have little parallel data available. Besides the technical challenges of learning with limited supervision, it is difficult to evaluate methods trained on low-resource language pairs because of the lack of freely and publicly available benchmarks. In this work, we introduce the FLoRes evaluation datasets for Nepali-English and Sinhala-English, based on sentences translated from Wikipedia. Compared to English, these are languages with very different morphology and syntax, for which little out-of-domain parallel data is available and for which relatively large amounts of monolingual data are freely available. We describe our process to collect and cross-check the quality of translations, and we report baseline performance using several learning settings: fully supervised, weakly supervised, semi-supervised, and fully unsupervised. Our experiments demonstrate that current state-of-the-art methods perform rather poorly on this benchmark, posing a challenge to the research community working on low-resource MT. Data and code to reproduce our experiments are available at https://github.com/facebookresearch/flores. 8 authors · Feb 4, 2019
- MiTTenS: A Dataset for Evaluating Misgendering in Translation Misgendering is the act of referring to someone in a way that does not reflect their gender identity. Translation systems, including foundation models capable of translation, can produce errors that result in misgendering harms. To measure the extent of such potential harms when translating into and out of English, we introduce a dataset, MiTTenS, covering 26 languages from a variety of language families and scripts, including several traditionally underpresented in digital resources. The dataset is constructed with handcrafted passages that target known failure patterns, longer synthetically generated passages, and natural passages sourced from multiple domains. We demonstrate the usefulness of the dataset by evaluating both dedicated neural machine translation systems and foundation models, and show that all systems exhibit errors resulting in misgendering harms, even in high resource languages. 5 authors · Jan 12, 2024
- Enhancing Gender-Inclusive Machine Translation with Neomorphemes and Large Language Models Machine translation (MT) models are known to suffer from gender bias, especially when translating into languages with extensive gendered morphology. Accordingly, they still fall short in using gender-inclusive language, also representative of non-binary identities. In this paper, we look at gender-inclusive neomorphemes, neologistic elements that avoid binary gender markings as an approach towards fairer MT. In this direction, we explore prompting techniques with large language models (LLMs) to translate from English into Italian using neomorphemes. So far, this area has been under-explored due to its novelty and the lack of publicly available evaluation resources. We fill this gap by releasing Neo-GATE, a resource designed to evaluate gender-inclusive en-it translation with neomorphemes. With Neo-GATE, we assess four LLMs of different families and sizes and different prompt formats, identifying strengths and weaknesses of each on this novel task for MT. 4 authors · May 14, 2024
- AnyTrans: Translate AnyText in the Image with Large Scale Models This paper introduces AnyTrans, an all-encompassing framework for the task-Translate AnyText in the Image (TATI), which includes multilingual text translation and text fusion within images. Our framework leverages the strengths of large-scale models, such as Large Language Models (LLMs) and text-guided diffusion models, to incorporate contextual cues from both textual and visual elements during translation. The few-shot learning capability of LLMs allows for the translation of fragmented texts by considering the overall context. Meanwhile, the advanced inpainting and editing abilities of diffusion models make it possible to fuse translated text seamlessly into the original image while preserving its style and realism. Additionally, our framework can be constructed entirely using open-source models and requires no training, making it highly accessible and easily expandable. To encourage advancement in the TATI task, we have meticulously compiled a test dataset called MTIT6, which consists of multilingual text image translation data from six language pairs. 8 authors · Jun 17, 2024
- A Network Analysis Approach to Conlang Research Literature The field of conlang has evidenced an important growth in the last decades. This has been the product of a wide interest in the use and study of conlangs for artistic purposes. However, one important question is what it is happening with conlang in the academic world. This paper aims to have an overall understanding of the literature on conlang research. With this we aim to give a realistic picture of the field in present days. We have implemented a computational linguistic approach, combining bibliometrics and network analysis to examine all publications available in the Scopus database. Analysing over 2300 academic publications since 1927 until 2022, we have found that Esperanto is by far the most documented conlang. Three main authors have contributed to this: Garv\'ia R., Fiedler S., and Blanke D. The 1970s and 1980s have been the decades where the foundations of current research have been built. In terms of methodologies, language learning and experimental linguistics are the ones contributing to most to the preferred approaches of study in the field. We present the results and discuss our limitations and future work. 1 authors · Jul 22, 2024
1 The FLORES-101 Evaluation Benchmark for Low-Resource and Multilingual Machine Translation One of the biggest challenges hindering progress in low-resource and multilingual machine translation is the lack of good evaluation benchmarks. Current evaluation benchmarks either lack good coverage of low-resource languages, consider only restricted domains, or are low quality because they are constructed using semi-automatic procedures. In this work, we introduce the FLORES-101 evaluation benchmark, consisting of 3001 sentences extracted from English Wikipedia and covering a variety of different topics and domains. These sentences have been translated in 101 languages by professional translators through a carefully controlled process. The resulting dataset enables better assessment of model quality on the long tail of low-resource languages, including the evaluation of many-to-many multilingual translation systems, as all translations are multilingually aligned. By publicly releasing such a high-quality and high-coverage dataset, we hope to foster progress in the machine translation community and beyond. 10 authors · Jun 6, 2021
1 Do GPTs Produce Less Literal Translations? Large Language Models (LLMs) such as GPT-3 have emerged as general-purpose language models capable of addressing many natural language generation or understanding tasks. On the task of Machine Translation (MT), multiple works have investigated few-shot prompting mechanisms to elicit better translations from LLMs. However, there has been relatively little investigation on how such translations differ qualitatively from the translations generated by standard Neural Machine Translation (NMT) models. In this work, we investigate these differences in terms of the literalness of translations produced by the two systems. Using literalness measures involving word alignment and monotonicity, we find that translations out of English (E-X) from GPTs tend to be less literal, while exhibiting similar or better scores on MT quality metrics. We demonstrate that this finding is borne out in human evaluations as well. We then show that these differences are especially pronounced when translating sentences that contain idiomatic expressions. 4 authors · May 26, 2023
4 Metadata Might Make Language Models Better This paper discusses the benefits of including metadata when training language models on historical collections. Using 19th-century newspapers as a case study, we extend the time-masking approach proposed by Rosin et al., 2022 and compare different strategies for inserting temporal, political and geographical information into a Masked Language Model. After fine-tuning several DistilBERT on enhanced input data, we provide a systematic evaluation of these models on a set of evaluation tasks: pseudo-perplexity, metadata mask-filling and supervised classification. We find that showing relevant metadata to a language model has a beneficial impact and may even produce more robust and fairer models. 2 authors · Nov 18, 2022 5
- Solving the unsolvable: Translating case law in Hong Kong This paper addresses the challenges translating case law under Hong Kong's bilingual legal system. It highlights the initial success of translating all written statutes into Chinese before the 1997 handover, a task mandated by the Basic Law. The effort involved significant collaboration among legal, linguistic, and translation experts, resulting in a comprehensive and culturally appropriate bilingual legal system. However, translating case law remains a significant challenge due to the sheer volume and continuous growth of judicial decisions. The paper critiques the governments and judiciarys sporadic and uncoordinated efforts to translate case law, contrasting it with the thorough approach previously taken for statute translation. Although the government acknowledges the importance of legal bilingualism, it lacks a sustainable strategy for translating case law. The Judiciarys position that translating all judgments is unnecessary, unrealistic, and not cost-effectiveis analyzed and critiqued for its impact on legal transparency and public trust. A proposed solution involves leveraging machine translation technology through a human-machine interactive translation platform, which undergoes two major transitions. Initially based on a neural model, the platform transitions to using a large language model for improved translation accuracy. Furthermore, it evolves from a single-agent system to a multi-agent system, incorporating Translator, Annotator, and Proofreader agents. This multi-agent approach, supported by a grant, aims to facilitate efficient, high-quality translation of judicial judgments by integrating advanced artificial intelligence and continuous feedback mechanisms, thus better meeting the needs of a bilingual legal system. 5 authors · Jan 16
- BOUQuET: dataset, Benchmark and Open initiative for Universal Quality Evaluation in Translation This paper presents BOUQuET, a multicentric and multi-register/domain dataset and benchmark, and its broader collaborative extension initiative. This dataset is handcrafted in non-English languages first, each of these source languages being represented among the 23 languages commonly used by half of the world's population and therefore having the potential to serve as pivot languages that will enable more accurate translations. The dataset is specially designed to avoid contamination and be multicentric, so as to enforce representation of multilingual language features. In addition, the dataset goes beyond the sentence level, as it is organized in paragraphs of various lengths. Compared with related machine translation (MT) datasets, we show that BOUQuET has a broader representation of domains while simplifying the translation task for non-experts. Therefore, BOUQuET is specially suitable for the open initiative and call for translation participation that we are launching to extend it to a multi-way parallel corpus to any written language. 17 authors · Feb 6
- Investigating Prompt Engineering in Diffusion Models With the spread of the use of Text2Img diffusion models such as DALL-E 2, Imagen, Mid Journey and Stable Diffusion, one challenge that artists face is selecting the right prompts to achieve the desired artistic output. We present techniques for measuring the effect that specific words and phrases in prompts have, and (in the Appendix) present guidance on the selection of prompts to produce desired effects. 2 authors · Nov 21, 2022
- Charles Translator: A Machine Translation System between Ukrainian and Czech We present Charles Translator, a machine translation system between Ukrainian and Czech, developed as part of a society-wide effort to mitigate the impact of the Russian-Ukrainian war on individuals and society. The system was developed in the spring of 2022 with the help of many language data providers in order to quickly meet the demand for such a service, which was not available at the time in the required quality. The translator was later implemented as an online web interface and as an Android app with speech input, both featuring Cyrillic-Latin script transliteration. The system translates directly, compared to other available systems that use English as a pivot, and thus take advantage of the typological similarity of the two languages. It uses the block back-translation method, which allows for efficient use of monolingual training data. The paper describes the development process, including data collection and implementation, evaluation, mentions several use cases, and outlines possibilities for the further development of the system for educational purposes. 10 authors · Apr 10, 2024
- KITTEN: A Knowledge-Intensive Evaluation of Image Generation on Visual Entities Recent advancements in text-to-image generation have significantly enhanced the quality of synthesized images. Despite this progress, evaluations predominantly focus on aesthetic appeal or alignment with text prompts. Consequently, there is limited understanding of whether these models can accurately represent a wide variety of realistic visual entities - a task requiring real-world knowledge. To address this gap, we propose a benchmark focused on evaluating Knowledge-InTensive image generaTion on real-world ENtities (i.e., KITTEN). Using KITTEN, we conduct a systematic study on the fidelity of entities in text-to-image generation models, focusing on their ability to generate a wide range of real-world visual entities, such as landmark buildings, aircraft, plants, and animals. We evaluate the latest text-to-image models and retrieval-augmented customization models using both automatic metrics and carefully-designed human evaluations, with an emphasis on the fidelity of entities in the generated images. Our findings reveal that even the most advanced text-to-image models often fail to generate entities with accurate visual details. Although retrieval-augmented models can enhance the fidelity of entity by incorporating reference images during testing, they often over-rely on these references and struggle to produce novel configurations of the entity as requested in creative text prompts. 11 authors · Oct 15, 2024
- Learning Semantic Correspondences in Technical Documentation We consider the problem of translating high-level textual descriptions to formal representations in technical documentation as part of an effort to model the meaning of such documentation. We focus specifically on the problem of learning translational correspondences between text descriptions and grounded representations in the target documentation, such as formal representation of functions or code templates. Our approach exploits the parallel nature of such documentation, or the tight coupling between high-level text and the low-level representations we aim to learn. Data is collected by mining technical documents for such parallel text-representation pairs, which we use to train a simple semantic parsing model. We report new baseline results on sixteen novel datasets, including the standard library documentation for nine popular programming languages across seven natural languages, and a small collection of Unix utility manuals. 2 authors · May 13, 2017
- T2Ranking: A large-scale Chinese Benchmark for Passage Ranking Passage ranking involves two stages: passage retrieval and passage re-ranking, which are important and challenging topics for both academics and industries in the area of Information Retrieval (IR). However, the commonly-used datasets for passage ranking usually focus on the English language. For non-English scenarios, such as Chinese, the existing datasets are limited in terms of data scale, fine-grained relevance annotation and false negative issues. To address this problem, we introduce T2Ranking, a large-scale Chinese benchmark for passage ranking. T2Ranking comprises more than 300K queries and over 2M unique passages from real-world search engines. Expert annotators are recruited to provide 4-level graded relevance scores (fine-grained) for query-passage pairs instead of binary relevance judgments (coarse-grained). To ease the false negative issues, more passages with higher diversities are considered when performing relevance annotations, especially in the test set, to ensure a more accurate evaluation. Apart from the textual query and passage data, other auxiliary resources are also provided, such as query types and XML files of documents which passages are generated from, to facilitate further studies. To evaluate the dataset, commonly used ranking models are implemented and tested on T2Ranking as baselines. The experimental results show that T2Ranking is challenging and there is still scope for improvement. The full data and all codes are available at https://github.com/THUIR/T2Ranking/ 11 authors · Apr 7, 2023
1 Searching for Needles in a Haystack: On the Role of Incidental Bilingualism in PaLM's Translation Capability Large, multilingual language models exhibit surprisingly good zero- or few-shot machine translation capabilities, despite having never seen the intentionally-included translation examples provided to typical neural translation systems. We investigate the role of incidental bilingualism -- the unintentional consumption of bilingual signals, including translation examples -- in explaining the translation capabilities of large language models, taking the Pathways Language Model (PaLM) as a case study. We introduce a mixed-method approach to measure and understand incidental bilingualism at scale. We show that PaLM is exposed to over 30 million translation pairs across at least 44 languages. Furthermore, the amount of incidental bilingual content is highly correlated with the amount of monolingual in-language content for non-English languages. We relate incidental bilingual content to zero-shot prompts and show that it can be used to mine new prompts to improve PaLM's out-of-English zero-shot translation quality. Finally, in a series of small-scale ablations, we show that its presence has a substantial impact on translation capabilities, although this impact diminishes with model scale. 3 authors · May 17, 2023
1 Neural machine translation system for Lezgian, Russian and Azerbaijani languages We release the first neural machine translation system for translation between Russian, Azerbaijani and the endangered Lezgian languages, as well as monolingual and parallel datasets collected and aligned for training and evaluating the system. Multiple experiments are conducted to identify how different sets of training language pairs and data domains can influence the resulting translation quality. We achieve BLEU scores of 26.14 for Lezgian-Azerbaijani, 22.89 for Azerbaijani-Lezgian, 29.48 for Lezgian-Russian and 24.25 for Russian-Lezgian pairs. The quality of zero-shot translation is assessed on a Large Language Model, showing its high level of fluency in Lezgian. However, the model often refuses to translate, justifying itself with its incompetence. We contribute our translation model along with the collected parallel and monolingual corpora and sentence encoder for the Lezgian language. 2 authors · Oct 7, 2024
- CUNI Submission to MRL 2023 Shared Task on Multi-lingual Multi-task Information Retrieval We present the Charles University system for the MRL~2023 Shared Task on Multi-lingual Multi-task Information Retrieval. The goal of the shared task was to develop systems for named entity recognition and question answering in several under-represented languages. Our solutions to both subtasks rely on the translate-test approach. We first translate the unlabeled examples into English using a multilingual machine translation model. Then, we run inference on the translated data using a strong task-specific model. Finally, we project the labeled data back into the original language. To keep the inferred tags on the correct positions in the original language, we propose a method based on scoring the candidate positions using a label-sensitive translation model. In both settings, we experiment with finetuning the classification models on the translated data. However, due to a domain mismatch between the development data and the shared task validation and test sets, the finetuned models could not outperform our baselines. 2 authors · Oct 25, 2023
1 RELIC: Investigating Large Language Model Responses using Self-Consistency Large Language Models (LLMs) are notorious for blending fact with fiction and generating non-factual content, known as hallucinations. To tackle this challenge, we propose an interactive system that helps users obtain insights into the reliability of the generated text. Our approach is based on the idea that the self-consistency of multiple samples generated by the same LLM relates to its confidence in individual claims in the generated texts. Using this idea, we design RELIC, an interactive system that enables users to investigate and verify semantic-level variations in multiple long-form responses. This allows users to recognize potentially inaccurate information in the generated text and make necessary corrections. From a user study with ten participants, we demonstrate that our approach helps users better verify the reliability of the generated text. We further summarize the design implications and lessons learned from this research for inspiring future studies on reliable human-LLM interactions. 6 authors · Nov 28, 2023
- Machine Translation Models are Zero-Shot Detectors of Translation Direction Detecting the translation direction of parallel text has applications for machine translation training and evaluation, but also has forensic applications such as resolving plagiarism or forgery allegations. In this work, we explore an unsupervised approach to translation direction detection based on the simple hypothesis that p(translation|original)>p(original|translation), motivated by the well-known simplification effect in translationese or machine-translationese. In experiments with massively multilingual machine translation models across 20 translation directions, we confirm the effectiveness of the approach for high-resource language pairs, achieving document-level accuracies of 82-96% for NMT-produced translations, and 60-81% for human translations, depending on the model used. Code and demo are available at https://github.com/ZurichNLP/translation-direction-detection 3 authors · Jan 12, 2024
- Kreyòl-MT: Building MT for Latin American, Caribbean and Colonial African Creole Languages A majority of language technologies are tailored for a small number of high-resource languages, while relatively many low-resource languages are neglected. One such group, Creole languages, have long been marginalized in academic study, though their speakers could benefit from machine translation (MT). These languages are predominantly used in much of Latin America, Africa and the Caribbean. We present the largest cumulative dataset to date for Creole language MT, including 14.5M unique Creole sentences with parallel translations -- 11.6M of which we release publicly, and the largest bitexts gathered to date for 41 languages -- the first ever for 21. In addition, we provide MT models supporting all 41 Creole languages in 172 translation directions. Given our diverse dataset, we produce a model for Creole language MT exposed to more genre diversity than ever before, which outperforms a genre-specific Creole MT model on its own benchmark for 26 of 34 translation directions. 17 authors · May 8, 2024
- Large Language Models Are State-of-the-Art Evaluators of Translation Quality We describe GEMBA, a GPT-based metric for assessment of translation quality, which works both with a reference translation and without. In our evaluation, we focus on zero-shot prompting, comparing four prompt variants in two modes, based on the availability of the reference. We investigate nine versions of GPT models, including ChatGPT and GPT-4. We show that our method for translation quality assessment only works with GPT~3.5 and larger models. Comparing to results from WMT22's Metrics shared task, our method achieves state-of-the-art accuracy in both modes when compared to MQM-based human labels. Our results are valid on the system level for all three WMT22 Metrics shared task language pairs, namely English into German, English into Russian, and Chinese into English. This provides a first glimpse into the usefulness of pre-trained, generative large language models for quality assessment of translations. We publicly release all our code and prompt templates used for the experiments described in this work, as well as all corresponding scoring results, to allow for external validation and reproducibility. 2 authors · Feb 28, 2023
- Constructing and Expanding Low-Resource and Underrepresented Parallel Datasets for Indonesian Local Languages In Indonesia, local languages play an integral role in the culture. However, the available Indonesian language resources still fall into the category of limited data in the Natural Language Processing (NLP) field. This is become problematic when build NLP model for these languages. To address this gap, we introduce Bhinneka Korpus, a multilingual parallel corpus featuring five Indonesian local languages. Our goal is to enhance access and utilization of these resources, extending their reach within the country. We explained in a detail the dataset collection process and associated challenges. Additionally, we experimented with translation task using the IBM Model 1 due to data constraints. The result showed that the performance of each language already shows good indications for further development. Challenges such as lexical variation, smoothing effects, and cross-linguistic variability are discussed. We intend to evaluate the corpus using advanced NLP techniques for low-resource languages, paving the way for multilingual translation models. 2 authors · Apr 1, 2024
1 A Morphologically-Aware Dictionary-based Data Augmentation Technique for Machine Translation of Under-Represented Languages The availability of parallel texts is crucial to the performance of machine translation models. However, most of the world's languages face the predominant challenge of data scarcity. In this paper, we propose strategies to synthesize parallel data relying on morpho-syntactic information and using bilingual lexicons along with a small amount of seed parallel data. Our methodology adheres to a realistic scenario backed by the small parallel seed data. It is linguistically informed, as it aims to create augmented data that is more likely to be grammatically correct. We analyze how our synthetic data can be combined with raw parallel data and demonstrate a consistent improvement in performance in our experiments on 14 languages (28 English <-> X pairs) ranging from well- to very low-resource ones. Our method leads to improvements even when using only five seed sentences and a bilingual lexicon. 3 authors · Feb 2, 2024 1
- Lost in Translation? Translation Errors and Challenges for Fair Assessment of Text-to-Image Models on Multilingual Concepts Benchmarks of the multilingual capabilities of text-to-image (T2I) models compare generated images prompted in a test language to an expected image distribution over a concept set. One such benchmark, "Conceptual Coverage Across Languages" (CoCo-CroLa), assesses the tangible noun inventory of T2I models by prompting them to generate pictures from a concept list translated to seven languages and comparing the output image populations. Unfortunately, we find that this benchmark contains translation errors of varying severity in Spanish, Japanese, and Chinese. We provide corrections for these errors and analyze how impactful they are on the utility and validity of CoCo-CroLa as a benchmark. We reassess multiple baseline T2I models with the revisions, compare the outputs elicited under the new translations to those conditioned on the old, and show that a correction's impactfulness on the image-domain benchmark results can be predicted in the text domain with similarity scores. Our findings will guide the future development of T2I multilinguality metrics by providing analytical tools for practical translation decisions. 6 authors · Mar 17, 2024
- AFRIDOC-MT: Document-level MT Corpus for African Languages This paper introduces AFRIDOC-MT, a document-level multi-parallel translation dataset covering English and five African languages: Amharic, Hausa, Swahili, Yor\`ub\'a, and Zulu. The dataset comprises 334 health and 271 information technology news documents, all human-translated from English to these languages. We conduct document-level translation benchmark experiments by evaluating neural machine translation (NMT) models and large language models (LLMs) for translations between English and these languages, at both the sentence and pseudo-document levels. These outputs are realigned to form complete documents for evaluation. Our results indicate that NLLB-200 achieved the best average performance among the standard NMT models, while GPT-4o outperformed general-purpose LLMs. Fine-tuning selected models led to substantial performance gains, but models trained on sentences struggled to generalize effectively to longer documents. Furthermore, our analysis reveals that some LLMs exhibit issues such as under-generation, repetition of words or phrases, and off-target translations, especially for African languages. 16 authors · Jan 10
- New Textual Corpora for Serbian Language Modeling This paper will present textual corpora for Serbian (and Serbo-Croatian), usable for the training of large language models and publicly available at one of the several notable online repositories. Each corpus will be classified using multiple methods and its characteristics will be detailed. Additionally, the paper will introduce three new corpora: a new umbrella web corpus of Serbo-Croatian, a new high-quality corpus based on the doctoral dissertations stored within National Repository of Doctoral Dissertations from all Universities in Serbia, and a parallel corpus of abstract translation from the same source. The uniqueness of both old and new corpora will be accessed via frequency-based stylometric methods, and the results will be briefly discussed. 2 authors · May 15, 2024
1 MatKB: Semantic Search for Polycrystalline Materials Synthesis Procedures In this paper, we present a novel approach to knowledge extraction and retrieval using Natural Language Processing (NLP) techniques for material science. Our goal is to automatically mine structured knowledge from millions of research articles in the field of polycrystalline materials and make it easily accessible to the broader community. The proposed method leverages NLP techniques such as entity recognition and document classification to extract relevant information and build an extensive knowledge base, from a collection of 9.5 Million publications. The resulting knowledge base is integrated into a search engine, which enables users to search for information about specific materials, properties, and experiments with greater precision than traditional search engines like Google. We hope our results can enable material scientists quickly locate desired experimental procedures, compare their differences, and even inspire them to design new experiments. Our website will be available at Github https://github.com/Xianjun-Yang/PcMSP.git soon. 3 authors · Feb 10, 2023
1 Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph The proposed research aims to develop an innovative semantic query processing system that enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University (ANU). The system integrates Large Language Models (LLMs) with the ANU Scholarly Knowledge Graph (ASKG), a structured repository of all research-related artifacts produced at ANU in the CS field. Each artifact and its parts are represented as textual nodes stored in a Knowledge Graph (KG). To address the limitations of traditional scholarly KG construction and utilization methods, which often fail to capture fine-grained details, we propose a novel framework that integrates the Deep Document Model (DDM) for comprehensive document representation and the KG-enhanced Query Processing (KGQP) for optimized complex query handling. DDM enables a fine-grained representation of the hierarchical structure and semantic relationships within academic papers, while KGQP leverages the KG structure to improve query accuracy and efficiency with LLMs. By combining the ASKG with LLMs, our approach enhances knowledge utilization and natural language understanding capabilities. The proposed system employs an automatic LLM-SPARQL fusion to retrieve relevant facts and textual nodes from the ASKG. Initial experiments demonstrate that our framework is superior to baseline methods in terms of accuracy retrieval and query efficiency. We showcase the practical application of our framework in academic research scenarios, highlighting its potential to revolutionize scholarly knowledge management and discovery. This work empowers researchers to acquire and utilize knowledge from documents more effectively and provides a foundation for developing precise and reliable interactions with LLMs. 4 authors · May 24, 2024
1 Beyond English-Centric Multilingual Machine Translation Existing work in translation demonstrated the potential of massively multilingual machine translation by training a single model able to translate between any pair of languages. However, much of this work is English-Centric by training only on data which was translated from or to English. While this is supported by large sources of training data, it does not reflect translation needs worldwide. In this work, we create a true Many-to-Many multilingual translation model that can translate directly between any pair of 100 languages. We build and open source a training dataset that covers thousands of language directions with supervised data, created through large-scale mining. Then, we explore how to effectively increase model capacity through a combination of dense scaling and language-specific sparse parameters to create high quality models. Our focus on non-English-Centric models brings gains of more than 10 BLEU when directly translating between non-English directions while performing competitively to the best single systems of WMT. We open-source our scripts so that others may reproduce the data, evaluation, and final M2M-100 model. 17 authors · Oct 21, 2020
- PatentEdits: Framing Patent Novelty as Textual Entailment A patent must be deemed novel and non-obvious in order to be granted by the US Patent Office (USPTO). If it is not, a US patent examiner will cite the prior work, or prior art, that invalidates the novelty and issue a non-final rejection. Predicting what claims of the invention should change given the prior art is an essential and crucial step in securing invention rights, yet has not been studied before as a learnable task. In this work we introduce the PatentEdits dataset, which contains 105K examples of successful revisions that overcome objections to novelty. We design algorithms to label edits sentence by sentence, then establish how well these edits can be predicted with large language models (LLMs). We demonstrate that evaluating textual entailment between cited references and draft sentences is especially effective in predicting which inventive claims remained unchanged or are novel in relation to prior art. 3 authors · Nov 20, 2024
- MapReader: A Computer Vision Pipeline for the Semantic Exploration of Maps at Scale We present MapReader, a free, open-source software library written in Python for analyzing large map collections (scanned or born-digital). This library transforms the way historians can use maps by turning extensive, homogeneous map sets into searchable primary sources. MapReader allows users with little or no computer vision expertise to i) retrieve maps via web-servers; ii) preprocess and divide them into patches; iii) annotate patches; iv) train, fine-tune, and evaluate deep neural network models; and v) create structured data about map content. We demonstrate how MapReader enables historians to interpret a collection of approx16K nineteenth-century Ordnance Survey map sheets (approx30.5M patches), foregrounding the challenge of translating visual markers into machine-readable data. We present a case study focusing on British rail infrastructure and buildings as depicted on these maps. We also show how the outputs from the MapReader pipeline can be linked to other, external datasets, which we use to evaluate as well as enrich and interpret the results. We release approx62K manually annotated patches used here for training and evaluating the models. 4 authors · Nov 30, 2021
6 BordIRlines: A Dataset for Evaluating Cross-lingual Retrieval-Augmented Generation Large language models excel at creative generation but continue to struggle with the issues of hallucination and bias. While retrieval-augmented generation (RAG) provides a framework for grounding LLMs' responses in accurate and up-to-date information, it still raises the question of bias: which sources should be selected for inclusion in the context? And how should their importance be weighted? In this paper, we study the challenge of cross-lingual RAG and present a dataset to investigate the robustness of existing systems at answering queries about geopolitical disputes, which exist at the intersection of linguistic, cultural, and political boundaries. Our dataset is sourced from Wikipedia pages containing information relevant to the given queries and we investigate the impact of including additional context, as well as the composition of this context in terms of language and source, on an LLM's response. Our results show that existing RAG systems continue to be challenged by cross-lingual use cases and suffer from a lack of consistency when they are provided with competing information in multiple languages. We present case studies to illustrate these issues and outline steps for future research to address these challenges. We make our dataset and code publicly available at https://github.com/manestay/bordIRlines. 5 authors · Oct 1, 2024 4
- ArxEval: Evaluating Retrieval and Generation in Language Models for Scientific Literature Language Models [LMs] are now playing an increasingly large role in information generation and synthesis; the representation of scientific knowledge in these systems needs to be highly accurate. A prime challenge is hallucination; that is, generating apparently plausible but actually false information, including invented citations and nonexistent research papers. This kind of inaccuracy is dangerous in all the domains that require high levels of factual correctness, such as academia and education. This work presents a pipeline for evaluating the frequency with which language models hallucinate in generating responses in the scientific literature. We propose ArxEval, an evaluation pipeline with two tasks using ArXiv as a repository: Jumbled Titles and Mixed Titles. Our evaluation includes fifteen widely used language models and provides comparative insights into their reliability in handling scientific literature. 4 authors · Jan 17
- Evaluating Visual and Cultural Interpretation: The K-Viscuit Benchmark with Human-VLM Collaboration To create culturally inclusive vision-language models (VLMs), the foremost requirement is developing a test benchmark that can diagnose the models' ability to respond to questions reflecting cultural elements. This paper addresses the necessity for such benchmarks, noting that existing research has relied on human annotators' manual efforts, which impedes diversity and efficiency. We propose a semi-automated pipeline for constructing cultural VLM benchmarks to enhance diversity and efficiency. This pipeline leverages human-VLM collaboration, where VLMs generate questions based on guidelines, human-annotated examples, and image-wise relevant knowledge, which are then reviewed by native speakers for quality and cultural relevance. The effectiveness of our adaptable pipeline is demonstrated through a specific application: creating a dataset tailored to Korean culture, dubbed K-Viscuit. The resulting benchmark features two types of questions: Type 1 questions measure visual recognition abilities, while Type 2 assess fine-grained visual reasoning skills. This ensures a thorough diagnosis of VLM models across various aspects. Our evaluation using K-Viscuit revealed that open-source models notably lag behind proprietary models in understanding Korean culture, highlighting areas for improvement. We provided diverse analyses of VLM performance across different cultural aspects. Besides, we explored the potential of incorporating external knowledge retrieval to enhance the generation process, suggesting future directions for improving cultural interpretation ability of VLMs. Our dataset and code will be made publicly available. 6 authors · Jun 24, 2024
- BertaQA: How Much Do Language Models Know About Local Culture? Large Language Models (LLMs) exhibit extensive knowledge about the world, but most evaluations have been limited to global or anglocentric subjects. This raises the question of how well these models perform on topics relevant to other cultures, whose presence on the web is not that prominent. To address this gap, we introduce BertaQA, a multiple-choice trivia dataset that is parallel in English and Basque. The dataset consists of a local subset with questions pertinent to the Basque culture, and a global subset with questions of broader interest. We find that state-of-the-art LLMs struggle with local cultural knowledge, even as they excel on global topics. However, we show that continued pre-training in Basque significantly improves the models' performance on Basque culture, even when queried in English. To our knowledge, this is the first solid evidence of knowledge transfer from a low-resource to a high-resource language. Our analysis sheds light on the complex interplay between language and knowledge, and reveals that some prior findings do not fully hold when reassessed on local topics. Our dataset and evaluation code are available under open licenses at https://github.com/juletx/BertaQA. 5 authors · Jun 11, 2024
- BLEU might be Guilty but References are not Innocent The quality of automatic metrics for machine translation has been increasingly called into question, especially for high-quality systems. This paper demonstrates that, while choice of metric is important, the nature of the references is also critical. We study different methods to collect references and compare their value in automated evaluation by reporting correlation with human evaluation for a variety of systems and metrics. Motivated by the finding that typical references exhibit poor diversity, concentrating around translationese language, we develop a paraphrasing task for linguists to perform on existing reference translations, which counteracts this bias. Our method yields higher correlation with human judgment not only for the submissions of WMT 2019 English to German, but also for Back-translation and APE augmented MT output, which have been shown to have low correlation with automatic metrics using standard references. We demonstrate that our methodology improves correlation with all modern evaluation metrics we look at, including embedding-based methods. To complete this picture, we reveal that multi-reference BLEU does not improve the correlation for high quality output, and present an alternative multi-reference formulation that is more effective. 3 authors · Apr 13, 2020
- LibriVoxDeEn: A Corpus for German-to-English Speech Translation and German Speech Recognition We present a corpus of sentence-aligned triples of German audio, German text, and English translation, based on German audiobooks. The speech translation data consist of 110 hours of audio material aligned to over 50k parallel sentences. An even larger dataset comprising 547 hours of German speech aligned to German text is available for speech recognition. The audio data is read speech and thus low in disfluencies. The quality of audio and sentence alignments has been checked by a manual evaluation, showing that speech alignment quality is in general very high. The sentence alignment quality is comparable to well-used parallel translation data and can be adjusted by cutoffs on the automatic alignment score. To our knowledge, this corpus is to date the largest resource for German speech recognition and for end-to-end German-to-English speech translation. 4 authors · Oct 17, 2019
- Worldwide AI Ethics: a review of 200 guidelines and recommendations for AI governance In the last decade, several organizations have produced documents intended to standardize, in the normative sense, and promote guidance to our recent and rapid AI development. However, the full spectrum of ideas presented in these documents has not yet been analyzed, except for a few meta-analyses and critical reviews of the field. In this work, we seek to expand on the work done by past researchers and create a tool for better data visualization of the contents and nature of these documents, to understand whether there is consensus or similarity between the principles espoused by various institutions, which may inspire debates on future regulations. We also provide some preliminary thoughts and questions that could guide the continuity of the research through a critical analysis of the results acquired by our methodology into a sample size of 200 documents. 10 authors · Jun 23, 2022
- Vision-Braille: An End-to-End Tool for Chinese Braille Image-to-Text Translation Visually impaired people are a large group who can only use braille for reading and writing. However, the lack of special educational resources is the bottleneck for educating them. Educational equity is a reflection of the level of social civilization, cultural equality, and individual dignity. Facilitating and improving lifelong learning channels for the visually impaired is of great significance. Their written braille homework or exam papers cannot be understood by sighted teachers, because of the lack of a highly accurate braille translation system, especially in Chinese which has tone marks. braille writers often omit tone marks to save space, leading to confusion when braille with the same consonants and vowels is translated into Chinese. Previous algorithms were insufficient in extracting contextual information, resulting in low accuracy of braille translations into Chinese. This project informatively fine-tuned the mT5 model with an Encoder-decoder architecture for braille to Chinese character conversion. This research created a training set of braille and corresponding Chinese text from the Leipzig Corpora. This project significantly reduced the confusion in braille, achieving 62.4 and 62.3 BLEU scores in the validation and test sets, with a curriculum learning fine-tuning method. By incorporating the braille recognition algorithm, this project is the first publicly available braille translation system and can benefit lots of visually impaired students and families who are preparing for the Chinese College Test and help to propel their college dreams in the future. There is a demo on our homepage\url{https://vision-braille.com/}. 3 authors · Jul 8, 2024
12 In-Context Example Selection via Similarity Search Improves Low-Resource Machine Translation The ability of generative large language models (LLMs) to perform in-context learning has given rise to a large body of research into how best to prompt models for various natural language processing tasks. In this paper, we focus on machine translation (MT), a task that has been shown to benefit from in-context translation examples. However no systematic studies have been published on how best to select examples, and mixed results have been reported on the usefulness of similarity-based selection over random selection. We provide a study covering multiple LLMs and multiple in-context example retrieval strategies, comparing multilingual sentence embeddings. We cover several language directions, representing different levels of language resourcedness (English into French, German, Swahili and Wolof). Contrarily to previously published results, we find that sentence embedding similarity can improve MT, especially for low-resource language directions, and discuss the balance between selection pool diversity and quality. We also highlight potential problems with the evaluation of LLM-based MT and suggest a more appropriate evaluation protocol, adapting the COMET metric to the evaluation of LLMs. Code and outputs are freely available at https://github.com/ArmelRandy/ICL-MT. 3 authors · Aug 1, 2024 2
- Frustratingly Easy Label Projection for Cross-lingual Transfer Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 57 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect the end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data. 4 authors · Nov 28, 2022
- HoneyBee: Progressive Instruction Finetuning of Large Language Models for Materials Science We propose an instruction-based process for trustworthy data curation in materials science (MatSci-Instruct), which we then apply to finetune a LLaMa-based language model targeted for materials science (HoneyBee). MatSci-Instruct helps alleviate the scarcity of relevant, high-quality materials science textual data available in the open literature, and HoneyBee is the first billion-parameter language model specialized to materials science. In MatSci-Instruct we improve the trustworthiness of generated data by prompting multiple commercially available large language models for generation with an Instructor module (e.g. Chat-GPT) and verification from an independent Verifier module (e.g. Claude). Using MatSci-Instruct, we construct a dataset of multiple tasks and measure the quality of our dataset along multiple dimensions, including accuracy against known facts, relevance to materials science, as well as completeness and reasonableness of the data. Moreover, we iteratively generate more targeted instructions and instruction-data in a finetuning-evaluation-feedback loop leading to progressively better performance for our finetuned HoneyBee models. Our evaluation on the MatSci-NLP benchmark shows HoneyBee's outperformance of existing language models on materials science tasks and iterative improvement in successive stages of instruction-data refinement. We study the quality of HoneyBee's language modeling through automatic evaluation and analyze case studies to further understand the model's capabilities and limitations. Our code and relevant datasets are publicly available at https://github.com/BangLab-UdeM-Mila/NLP4MatSci-HoneyBee. 4 authors · Oct 12, 2023
- DAG: Dictionary-Augmented Generation for Disambiguation of Sentences in Endangered Uralic Languages using ChatGPT We showcase that ChatGPT can be used to disambiguate lemmas in two endangered languages ChatGPT is not proficient in, namely Erzya and Skolt Sami. We augment our prompt by providing dictionary translations of the candidate lemmas to a majority language - Finnish in our case. This dictionary augmented generation approach results in 50\% accuracy for Skolt Sami and 41\% accuracy for Erzya. On a closer inspection, many of the error types were of the kind even an untrained human annotator would make. 1 authors · Nov 3, 2024
1 A New Massive Multilingual Dataset for High-Performance Language Technologies We present the HPLT (High Performance Language Technologies) language resources, a new massive multilingual dataset including both monolingual and bilingual corpora extracted from CommonCrawl and previously unused web crawls from the Internet Archive. We describe our methods for data acquisition, management and processing of large corpora, which rely on open-source software tools and high-performance computing. Our monolingual collection focuses on low- to medium-resourced languages and covers 75 languages and a total of ~5.6 trillion word tokens de-duplicated on the document level. Our English-centric parallel corpus is derived from its monolingual counterpart and covers 18 language pairs and more than 96 million aligned sentence pairs with roughly 1.4 billion English tokens. The HPLT language resources are one of the largest open text corpora ever released, providing a great resource for language modeling and machine translation training. We publicly release the corpora, the software, and the tools used in this work. 13 authors · Mar 20, 2024
- Machine Translation for Nko: Tools, Corpora and Baseline Results Currently, there is no usable machine translation system for Nko, a language spoken by tens of millions of people across multiple West African countries, which holds significant cultural and educational value. To address this issue, we present a set of tools, resources, and baseline results aimed towards the development of usable machine translation systems for Nko and other languages that do not currently have sufficiently large parallel text corpora available. (1) Friaparallelel: A novel collaborative parallel text curation software that incorporates quality control through copyedit-based workflows. (2) Expansion of the FLoRes-200 and NLLB-Seed corpora with 2,009 and 6,193 high-quality Nko translations in parallel with 204 and 40 other languages. (3) nicolingua-0005: A collection of trilingual and bilingual corpora with 130,850 parallel segments and monolingual corpora containing over 3 million Nko words. (4) Baseline bilingual and multilingual neural machine translation results with the best model scoring 30.83 English-Nko chrF++ on FLoRes-devtest. 12 authors · Oct 24, 2023
19 Project Alexandria: Towards Freeing Scientific Knowledge from Copyright Burdens via LLMs Paywalls, licenses and copyright rules often restrict the broad dissemination and reuse of scientific knowledge. We take the position that it is both legally and technically feasible to extract the scientific knowledge in scholarly texts. Current methods, like text embeddings, fail to reliably preserve factual content, and simple paraphrasing may not be legally sound. We urge the community to adopt a new idea: convert scholarly documents into Knowledge Units using LLMs. These units use structured data capturing entities, attributes and relationships without stylistic content. We provide evidence that Knowledge Units: (1) form a legally defensible framework for sharing knowledge from copyrighted research texts, based on legal analyses of German copyright law and U.S. Fair Use doctrine, and (2) preserve most (~95%) factual knowledge from original text, measured by MCQ performance on facts from the original copyrighted text across four research domains. Freeing scientific knowledge from copyright promises transformative benefits for scientific research and education by allowing language models to reuse important facts from copyrighted text. To support this, we share open-source tools for converting research documents into Knowledge Units. Overall, our work posits the feasibility of democratizing access to scientific knowledge while respecting copyright. 12 authors · Feb 26 3
- Evaluating Machine Translation Quality with Conformal Predictive Distributions This paper presents a new approach for assessing uncertainty in machine translation by simultaneously evaluating translation quality and providing a reliable confidence score. Our approach utilizes conformal predictive distributions to produce prediction intervals with guaranteed coverage, meaning that for any given significance level epsilon, we can expect the true quality score of a translation to fall out of the interval at a rate of 1-epsilon. In this paper, we demonstrate how our method outperforms a simple, but effective baseline on six different language pairs in terms of coverage and sharpness. Furthermore, we validate that our approach requires the data exchangeability assumption to hold for optimal performance. 1 authors · Jun 2, 2023
- Is GPT-3 all you need for Visual Question Answering in Cultural Heritage? The use of Deep Learning and Computer Vision in the Cultural Heritage domain is becoming highly relevant in the last few years with lots of applications about audio smart guides, interactive museums and augmented reality. All these technologies require lots of data to work effectively and be useful for the user. In the context of artworks, such data is annotated by experts in an expensive and time consuming process. In particular, for each artwork, an image of the artwork and a description sheet have to be collected in order to perform common tasks like Visual Question Answering. In this paper we propose a method for Visual Question Answering that allows to generate at runtime a description sheet that can be used for answering both visual and contextual questions about the artwork, avoiding completely the image and the annotation process. For this purpose, we investigate on the use of GPT-3 for generating descriptions for artworks analyzing the quality of generated descriptions through captioning metrics. Finally we evaluate the performance for Visual Question Answering and captioning tasks. 3 authors · Jul 25, 2022
- AMuRD: Annotated Multilingual Receipts Dataset for Cross-lingual Key Information Extraction and Classification Key information extraction involves recognizing and extracting text from scanned receipts, enabling retrieval of essential content, and organizing it into structured documents. This paper presents a novel multilingual dataset for receipt extraction, addressing key challenges in information extraction and item classification. The dataset comprises 47,720 samples, including annotations for item names, attributes like (price, brand, etc.), and classification into 44 product categories. We introduce the InstructLLaMA approach, achieving an F1 score of 0.76 and an accuracy of 0.68 for key information extraction and item classification. We provide code, datasets, and checkpoints.\url{https://github.com/Update-For-Integrated-Business-AI/AMuRD}. 5 authors · Sep 18, 2023
6 Leveraging Corpus Metadata to Detect Template-based Translation: An Exploratory Case Study of the Egyptian Arabic Wikipedia Edition Wikipedia articles (content pages) are commonly used corpora in Natural Language Processing (NLP) research, especially in low-resource languages other than English. Yet, a few research studies have studied the three Arabic Wikipedia editions, Arabic Wikipedia (AR), Egyptian Arabic Wikipedia (ARZ), and Moroccan Arabic Wikipedia (ARY), and documented issues in the Egyptian Arabic Wikipedia edition regarding the massive automatic creation of its articles using template-based translation from English to Arabic without human involvement, overwhelming the Egyptian Arabic Wikipedia with articles that do not only have low-quality content but also with articles that do not represent the Egyptian people, their culture, and their dialect. In this paper, we aim to mitigate the problem of template translation that occurred in the Egyptian Arabic Wikipedia by identifying these template-translated articles and their characteristics through exploratory analysis and building automatic detection systems. We first explore the content of the three Arabic Wikipedia editions in terms of density, quality, and human contributions and utilize the resulting insights to build multivariate machine learning classifiers leveraging articles' metadata to detect the template-translated articles automatically. We then publicly deploy and host the best-performing classifier, XGBoost, as an online application called EGYPTIAN WIKIPEDIA SCANNER and release the extracted, filtered, and labeled datasets to the research community to benefit from our datasets and the online, web-based detection system. 5 authors · Mar 31, 2024
- Russian Web Tables: A Public Corpus of Web Tables for Russian Language Based on Wikipedia Corpora that contain tabular data such as WebTables are a vital resource for the academic community. Essentially, they are the backbone of any modern research in information management. They are used for various tasks of data extraction, knowledge base construction, question answering, column semantic type detection and many other. Such corpora are useful not only as a source of data, but also as a base for building test datasets. So far, there were no such corpora for the Russian language and this seriously hindered research in the aforementioned areas. In this paper, we present the first corpus of Web tables created specifically out of Russian language material. It was built via a special toolkit we have developed to crawl the Russian Wikipedia. Both the corpus and the toolkit are open-source and publicly available. Finally, we present a short study that describes Russian Wikipedia tables and their statistics. 3 authors · Oct 3, 2022
- Towards Fully Automated Manga Translation We tackle the problem of machine translation of manga, Japanese comics. Manga translation involves two important problems in machine translation: context-aware and multimodal translation. Since text and images are mixed up in an unstructured fashion in Manga, obtaining context from the image is essential for manga translation. However, it is still an open problem how to extract context from image and integrate into MT models. In addition, corpus and benchmarks to train and evaluate such model is currently unavailable. In this paper, we make the following four contributions that establishes the foundation of manga translation research. First, we propose multimodal context-aware translation framework. We are the first to incorporate context information obtained from manga image. It enables us to translate texts in speech bubbles that cannot be translated without using context information (e.g., texts in other speech bubbles, gender of speakers, etc.). Second, for training the model, we propose the approach to automatic corpus construction from pairs of original manga and their translations, by which large parallel corpus can be constructed without any manual labeling. Third, we created a new benchmark to evaluate manga translation. Finally, on top of our proposed methods, we devised a first comprehensive system for fully automated manga translation. 4 authors · Dec 28, 2020
2 Wikimedia data for AI: a review of Wikimedia datasets for NLP tasks and AI-assisted editing Wikimedia content is used extensively by the AI community and within the language modeling community in particular. In this paper, we provide a review of the different ways in which Wikimedia data is curated to use in NLP tasks across pre-training, post-training, and model evaluations. We point to opportunities for greater use of Wikimedia content but also identify ways in which the language modeling community could better center the needs of Wikimedia editors. In particular, we call for incorporating additional sources of Wikimedia data, a greater focus on benchmarks for LLMs that encode Wikimedia principles, and greater multilingualism in Wikimedia-derived datasets. 3 authors · Oct 11, 2024
3 Sentence Embedding Models for Ancient Greek Using Multilingual Knowledge Distillation Contextual language models have been trained on Classical languages, including Ancient Greek and Latin, for tasks such as lemmatization, morphological tagging, part of speech tagging, authorship attribution, and detection of scribal errors. However, high-quality sentence embedding models for these historical languages are significantly more difficult to achieve due to the lack of training data. In this work, we use a multilingual knowledge distillation approach to train BERT models to produce sentence embeddings for Ancient Greek text. The state-of-the-art sentence embedding approaches for high-resource languages use massive datasets, but our distillation approach allows our Ancient Greek models to inherit the properties of these models while using a relatively small amount of translated sentence data. We build a parallel sentence dataset using a sentence-embedding alignment method to align Ancient Greek documents with English translations, and use this dataset to train our models. We evaluate our models on translation search, semantic similarity, and semantic retrieval tasks and investigate translation bias. We make our training and evaluation datasets freely available at https://github.com/kevinkrahn/ancient-greek-datasets . 3 authors · Aug 24, 2023
- Why Not Simply Translate? A First Swedish Evaluation Benchmark for Semantic Similarity This paper presents the first Swedish evaluation benchmark for textual semantic similarity. The benchmark is compiled by simply running the English STS-B dataset through the Google machine translation API. This paper discusses potential problems with using such a simple approach to compile a Swedish evaluation benchmark, including translation errors, vocabulary variation, and productive compounding. Despite some obvious problems with the resulting dataset, we use the benchmark to compare the majority of the currently existing Swedish text representations, demonstrating that native models outperform multilingual ones, and that simple bag of words performs remarkably well. 2 authors · Sep 7, 2020
- Mapping Supervised Bilingual Word Embeddings from English to low-resource languages It is very challenging to work with low-resource languages due to the inadequate availability of data. Using a dictionary to map independently trained word embeddings into a shared vector space has proved to be very useful in learning bilingual embeddings in the past. Here we have tried to map individual embeddings of words in English and their corresponding translated words in low-resource languages like Estonian, Slovenian, Slovakian, and Hungarian. We have used a supervised learning approach. We report accuracy scores through various retrieval strategies which show that it is possible to approach challenging tasks in Natural Language Processing like machine translation for such languages, provided that we have at least some amount of proper bilingual data. We also conclude that we can follow an unsupervised learning path on monolingual text data as that is more suitable for low-resource languages. 1 authors · Oct 14, 2019
- Translating Across Cultures: LLMs for Intralingual Cultural Adaptation LLMs are increasingly being deployed for multilingual applications and have demonstrated impressive translation capabilities between several low and high resource languages. An aspect of translation that often gets overlooked is that of cultural adaptation, or modifying source culture references to suit the target culture. Cultural adaptation has applications across several creative industries and requires intimate knowledge of source and target cultures during translation. While specialized translation models still outperform LLMs on the machine translation task when viewed from the lens of correctness, they are not sensitive to cultural differences often requiring manual correction. LLMs on the other hand have a rich reservoir of cultural knowledge embedded within its parameters that can be potentially exploited for such applications. In this paper we define the task of cultural adaptation and create an evaluation framework to benchmark different models for this task. We evaluate the performance of modern LLMs for cultural adaptation and analyze their cross cultural knowledge while connecting related concepts across different cultures. We also analyze possible issues with automatic adaptation including cultural biases and stereotypes. We hope that this task will offer more insight into the cultural understanding of LLMs and their creativity in cross-cultural scenarios. 3 authors · Jun 20, 2024
3 The IgboAPI Dataset: Empowering Igbo Language Technologies through Multi-dialectal Enrichment The Igbo language is facing a risk of becoming endangered, as indicated by a 2025 UNESCO study. This highlights the need to develop language technologies for Igbo to foster communication, learning and preservation. To create robust, impactful, and widely adopted language technologies for Igbo, it is essential to incorporate the multi-dialectal nature of the language. The primary obstacle in achieving dialectal-aware language technologies is the lack of comprehensive dialectal datasets. In response, we present the IgboAPI dataset, a multi-dialectal Igbo-English dictionary dataset, developed with the aim of enhancing the representation of Igbo dialects. Furthermore, we illustrate the practicality of the IgboAPI dataset through two distinct studies: one focusing on Igbo semantic lexicon and the other on machine translation. In the semantic lexicon project, we successfully establish an initial Igbo semantic lexicon for the Igbo semantic tagger, while in the machine translation study, we demonstrate that by finetuning existing machine translation systems using the IgboAPI dataset, we significantly improve their ability to handle dialectal variations in sentences. 15 authors · May 2, 2024
- Is ChatGPT A Good Translator? Yes With GPT-4 As The Engine This report provides a preliminary evaluation of ChatGPT for machine translation, including translation prompt, multilingual translation, and translation robustness. We adopt the prompts advised by ChatGPT to trigger its translation ability and find that the candidate prompts generally work well and show minor performance differences. By evaluating on a number of benchmark test sets, we find that ChatGPT performs competitively with commercial translation products (e.g., Google Translate) on high-resource European languages but lags behind significantly on low-resource or distant languages. For distant languages, we explore an interesting strategy named pivot~prompting that asks ChatGPT to translate the source sentence into a high-resource pivot language before into the target language, which improves the translation performance significantly. As for the translation robustness, ChatGPT does not perform as well as the commercial systems on biomedical abstracts or Reddit comments but exhibits good results on spoken language. With the launch of the GPT-4 engine, the translation performance of ChatGPT is significantly boosted, becoming comparable to commercial translation products, even for distant languages. In other words, ChatGPT~has~already~become~a~good~translator! Scripts and data: https://github.com/wxjiao/Is-ChatGPT-A-Good-Translator 5 authors · Jan 20, 2023
- Multi-EuP: The Multilingual European Parliament Dataset for Analysis of Bias in Information Retrieval We present Multi-EuP, a new multilingual benchmark dataset, comprising 22K multi-lingual documents collected from the European Parliament, spanning 24 languages. This dataset is designed to investigate fairness in a multilingual information retrieval (IR) context to analyze both language and demographic bias in a ranking context. It boasts an authentic multilingual corpus, featuring topics translated into all 24 languages, as well as cross-lingual relevance judgments. Furthermore, it offers rich demographic information associated with its documents, facilitating the study of demographic bias. We report the effectiveness of Multi-EuP for benchmarking both monolingual and multilingual IR. We also conduct a preliminary experiment on language bias caused by the choice of tokenization strategy. 3 authors · Nov 3, 2023
- Cross-lingual Argumentation Mining: Machine Translation (and a bit of Projection) is All You Need! Argumentation mining (AM) requires the identification of complex discourse structures and has lately been applied with success monolingually. In this work, we show that the existing resources are, however, not adequate for assessing cross-lingual AM, due to their heterogeneity or lack of complexity. We therefore create suitable parallel corpora by (human and machine) translating a popular AM dataset consisting of persuasive student essays into German, French, Spanish, and Chinese. We then compare (i) annotation projection and (ii) bilingual word embeddings based direct transfer strategies for cross-lingual AM, finding that the former performs considerably better and almost eliminates the loss from cross-lingual transfer. Moreover, we find that annotation projection works equally well when using either costly human or cheap machine translations. Our code and data are available at http://github.com/UKPLab/coling2018-xling_argument_mining. 4 authors · Jul 24, 2018
- Studying the role of named entities for content preservation in text style transfer Text style transfer techniques are gaining popularity in Natural Language Processing, finding various applications such as text detoxification, sentiment, or formality transfer. However, the majority of the existing approaches were tested on such domains as online communications on public platforms, music, or entertainment yet none of them were applied to the domains which are typical for task-oriented production systems, such as personal plans arrangements (e.g. booking of flights or reserving a table in a restaurant). We fill this gap by studying formality transfer in this domain. We noted that the texts in this domain are full of named entities, which are very important for keeping the original sense of the text. Indeed, if for example, someone communicates the destination city of a flight it must not be altered. Thus, we concentrate on the role of named entities in content preservation for formality text style transfer. We collect a new dataset for the evaluation of content similarity measures in text style transfer. It is taken from a corpus of task-oriented dialogues and contains many important entities related to realistic requests that make this dataset particularly useful for testing style transfer models before using them in production. Besides, we perform an error analysis of a pre-trained formality transfer model and introduce a simple technique to use information about named entities to enhance the performance of baseline content similarity measures used in text style transfer. 5 authors · Jun 20, 2022
- Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation Large Language Models (LLMs) have achieved remarkable results in the machine translation evaluation task, yet there remains a gap in knowledge regarding how they utilize the provided data to conduct evaluations. This study aims to explore how LLMs leverage source and reference information in evaluating translations, with the ultimate goal of better understanding the working mechanism of LLMs. To this end, we design the controlled experiments across various input modes and model types, and employ both coarse-grained and fine-grained prompts to discern the utility of source versus reference information. Surprisingly, we find that reference information significantly enhances the evaluation accuracy, while source information sometimes is counterproductive, indicating a lack of cross-lingual capability when using LLMs to evaluate translations. We further conduct a meta-evaluation for translation error detection of LLMs, observing a similar phenomenon. These findings also suggest a potential research direction for LLMs that fully exploits the cross-lingual capability of LLMs to achieve better performance in machine translation evaluation tasks. 6 authors · Jan 12, 2024
- FineWeb-zhtw: Scalable Curation of Traditional Chinese Text Data from the Web The quality and size of a pretraining dataset significantly influence the performance of large language models (LLMs). While there have been numerous efforts in the curation of such a dataset for English users, there is a relative lack of similar initiatives for Traditional Chinese. Building upon this foundation of FineWeb, we introduce FineWeb-zhtw, a dataset tailored specifically for Traditional Chinese users. We came up with multiple stages of meticulously designed filters to cater to the linguistic difference between English and Traditional Chinese, to ensure comprehensiveness and quality. We determined effectiveness from querying dataset samples with three main objectives. Our code and datasets are publicly available. 9 authors · Nov 25, 2024
- CRAT: A Multi-Agent Framework for Causality-Enhanced Reflective and Retrieval-Augmented Translation with Large Language Models Large language models (LLMs) have shown great promise in machine translation, but they still struggle with contextually dependent terms, such as new or domain-specific words. This leads to inconsistencies and errors that are difficult to address. Existing solutions often depend on manual identification of such terms, which is impractical given the complexity and evolving nature of language. While Retrieval-Augmented Generation (RAG) could provide some assistance, its application to translation is limited by issues such as hallucinations from information overload. In this paper, we propose CRAT, a novel multi-agent translation framework that leverages RAG and causality-enhanced self-reflection to address these challenges. This framework consists of several specialized agents: the Unknown Terms Identification agent detects unknown terms within the context, the Knowledge Graph (KG) Constructor agent extracts relevant internal knowledge about these terms and retrieves bilingual information from external sources, the Causality-enhanced Judge agent validates the accuracy of the information, and the Translator agent incorporates the refined information into the final output. This automated process allows for more precise and consistent handling of key terms during translation. Our results show that CRAT significantly improves translation accuracy, particularly in handling context-sensitive terms and emerging vocabulary. 5 authors · Oct 28, 2024
- Artificial intelligence contribution to translation industry: looking back and forward This study provides a comprehensive analysis of artificial intelligence (AI) contribution to translation industry (ACTI) research, synthesizing it over forty-one years from 1980-2024. 13220 articles were retrieved from three sources, namely WoS, Scopus, and Lens. We provided two types of analysis, viz., scientometric and thematic, focusing on cluster, subject categories, keywords, burstness, centrality and research centers as for the former. For the latter, we thematically review 18 articles, selected purposefully from the articles involved, centering on purpose, approach, findings, and contribution to ACTI future directions. The findings reveal that in the past AI contribution to translation industry was not rigorous, resulting in rule-based machine translation and statistical machine translation whose output was not satisfactory. However, the more AI develops, the more machine translation develops, incorporating Neural Networking Algorithms and (Deep) Language Learning Models like ChatGPT whose translation output has developed considerably. However, much rigorous research is still needed to overcome several problems encountering translation industry, specifically concerning low-source languages, multi-dialectical and free word order languages, and cultural and religious registers. 1 authors · Nov 29, 2024
22 Glyph-ByT5-v2: A Strong Aesthetic Baseline for Accurate Multilingual Visual Text Rendering Recently, Glyph-ByT5 has achieved highly accurate visual text rendering performance in graphic design images. However, it still focuses solely on English and performs relatively poorly in terms of visual appeal. In this work, we address these two fundamental limitations by presenting Glyph-ByT5-v2 and Glyph-SDXL-v2, which not only support accurate visual text rendering for 10 different languages but also achieve much better aesthetic quality. To achieve this, we make the following contributions: (i) creating a high-quality multilingual glyph-text and graphic design dataset consisting of more than 1 million glyph-text pairs and 10 million graphic design image-text pairs covering nine other languages, (ii) building a multilingual visual paragraph benchmark consisting of 1,000 prompts, with 100 for each language, to assess multilingual visual spelling accuracy, and (iii) leveraging the latest step-aware preference learning approach to enhance the visual aesthetic quality. With the combination of these techniques, we deliver a powerful customized multilingual text encoder, Glyph-ByT5-v2, and a strong aesthetic graphic generation model, Glyph-SDXL-v2, that can support accurate spelling in 10 different languages. We perceive our work as a significant advancement, considering that the latest DALL-E3 and Ideogram 1.0 still struggle with the multilingual visual text rendering task. 6 authors · Jun 14, 2024 2
1 Harnessing LLMs for Educational Content-Driven Italian Crossword Generation In this work, we unveil a novel tool for generating Italian crossword puzzles from text, utilizing advanced language models such as GPT-4o, Mistral-7B-Instruct-v0.3, and Llama3-8b-Instruct. Crafted specifically for educational applications, this cutting-edge generator makes use of the comprehensive Italian-Clue-Instruct dataset, which comprises over 30,000 entries including diverse text, solutions, and types of clues. This carefully assembled dataset is designed to facilitate the creation of contextually relevant clues in various styles associated with specific texts and keywords. The study delves into four distinctive styles of crossword clues: those without format constraints, those formed as definite determiner phrases, copular sentences, and bare noun phrases. Each style introduces unique linguistic structures to diversify clue presentation. Given the lack of sophisticated educational tools tailored to the Italian language, this project seeks to enhance learning experiences and cognitive development through an engaging, interactive platform. By meshing state-of-the-art AI with contemporary educational strategies, our tool can dynamically generate crossword puzzles from Italian educational materials, thereby providing an enjoyable and interactive learning environment. This technological advancement not only redefines educational paradigms but also sets a new benchmark for interactive and cognitive language learning solutions. 5 authors · Nov 25, 2024
- Zero-Shot Translation Quality Estimation with Explicit Cross-Lingual Patterns This paper describes our submission of the WMT 2020 Shared Task on Sentence Level Direct Assessment, Quality Estimation (QE). In this study, we empirically reveal the mismatching issue when directly adopting BERTScore to QE. Specifically, there exist lots of mismatching errors between the source sentence and translated candidate sentence with token pairwise similarity. In response to this issue, we propose to expose explicit cross-lingual patterns, e.g. word alignments and generation score, to our proposed zero-shot models. Experiments show that our proposed QE model with explicit cross-lingual patterns could alleviate the mismatching issue, thereby improving the performance. Encouragingly, our zero-shot QE method could achieve comparable performance with supervised QE method, and even outperforms the supervised counterpart on 2 out of 6 directions. We expect our work could shed light on the zero-shot QE model improvement. 3 authors · Oct 10, 2020
1 Detecting and Mitigating Hallucinations in Machine Translation: Model Internal Workings Alone Do Well, Sentence Similarity Even Better While the problem of hallucinations in neural machine translation has long been recognized, so far the progress on its alleviation is very little. Indeed, recently it turned out that without artificially encouraging models to hallucinate, previously existing methods fall short and even the standard sequence log-probability is more informative. It means that characteristics internal to the model can give much more information than we expect, and before using external models and measures, we first need to ask: how far can we go if we use nothing but the translation model itself ? We propose to use a method that evaluates the percentage of the source contribution to a generated translation. Intuitively, hallucinations are translations "detached" from the source, hence they can be identified by low source contribution. This method improves detection accuracy for the most severe hallucinations by a factor of 2 and is able to alleviate hallucinations at test time on par with the previous best approach that relies on external models. Next, if we move away from internal model characteristics and allow external tools, we show that using sentence similarity from cross-lingual embeddings further improves these results. 4 authors · Dec 16, 2022
1 English-Twi Parallel Corpus for Machine Translation We present a parallel machine translation training corpus for English and Akuapem Twi of 25,421 sentence pairs. We used a transformer-based translator to generate initial translations in Akuapem Twi, which were later verified and corrected where necessary by native speakers to eliminate any occurrence of translationese. In addition, 697 higher quality crowd-sourced sentences are provided for use as an evaluation set for downstream Natural Language Processing (NLP) tasks. The typical use case for the larger human-verified dataset is for further training of machine translation models in Akuapem Twi. The higher quality 697 crowd-sourced dataset is recommended as a testing dataset for machine translation of English to Twi and Twi to English models. Furthermore, the Twi part of the crowd-sourced data may also be used for other tasks, such as representation learning, classification, etc. We fine-tune the transformer translation model on the training corpus and report benchmarks on the crowd-sourced test set. 27 authors · Mar 29, 2021
- The Ghost in the Machine has an American accent: value conflict in GPT-3 The alignment problem in the context of large language models must consider the plurality of human values in our world. Whilst there are many resonant and overlapping values amongst the world's cultures, there are also many conflicting, yet equally valid, values. It is important to observe which cultural values a model exhibits, particularly when there is a value conflict between input prompts and generated outputs. We discuss how the co-creation of language and cultural value impacts large language models (LLMs). We explore the constitution of the training data for GPT-3 and compare that to the world's language and internet access demographics, as well as to reported statistical profiles of dominant values in some Nation-states. We stress tested GPT-3 with a range of value-rich texts representing several languages and nations; including some with values orthogonal to dominant US public opinion as reported by the World Values Survey. We observed when values embedded in the input text were mutated in the generated outputs and noted when these conflicting values were more aligned with reported dominant US values. Our discussion of these results uses a moral value pluralism (MVP) lens to better understand these value mutations. Finally, we provide recommendations for how our work may contribute to other current work in the field. 7 authors · Mar 15, 2022
3 Airavata: Introducing Hindi Instruction-tuned LLM We announce the initial release of "Airavata," an instruction-tuned LLM for Hindi. Airavata was created by fine-tuning OpenHathi with diverse, instruction-tuning Hindi datasets to make it better suited for assistive tasks. Along with the model, we also share the IndicInstruct dataset, which is a collection of diverse instruction-tuning datasets to enable further research for Indic LLMs. Additionally, we present evaluation benchmarks and a framework for assessing LLM performance across tasks in Hindi. Currently, Airavata supports Hindi, but we plan to expand this to all 22 scheduled Indic languages. You can access all artifacts at https://ai4bharat.github.io/airavata. 11 authors · Jan 26, 2024 2
- CoVoST 2 and Massively Multilingual Speech-to-Text Translation Speech translation has recently become an increasingly popular topic of research, partly due to the development of benchmark datasets. Nevertheless, current datasets cover a limited number of languages. With the aim to foster research in massive multilingual speech translation and speech translation for low resource language pairs, we release CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English and from English into 15 languages. This represents the largest open dataset available to date from total volume and language coverage perspective. Data sanity checks provide evidence about the quality of the data, which is released under CC0 license. We also provide extensive speech recognition, bilingual and multilingual machine translation and speech translation baselines with open-source implementation. 3 authors · Jul 20, 2020
- Detecting AI-Generated Text: Factors Influencing Detectability with Current Methods Large language models (LLMs) have advanced to a point that even humans have difficulty discerning whether a text was generated by another human, or by a computer. However, knowing whether a text was produced by human or artificial intelligence (AI) is important to determining its trustworthiness, and has applications in many domains including detecting fraud and academic dishonesty, as well as combating the spread of misinformation and political propaganda. The task of AI-generated text (AIGT) detection is therefore both very challenging, and highly critical. In this survey, we summarize state-of-the art approaches to AIGT detection, including watermarking, statistical and stylistic analysis, and machine learning classification. We also provide information about existing datasets for this task. Synthesizing the research findings, we aim to provide insight into the salient factors that combine to determine how "detectable" AIGT text is under different scenarios, and to make practical recommendations for future work towards this significant technical and societal challenge. 3 authors · Jun 21, 2024
- Vega-MT: The JD Explore Academy Translation System for WMT22 We describe the JD Explore Academy's submission of the WMT 2022 shared general translation task. We participated in all high-resource tracks and one medium-resource track, including Chinese-English, German-English, Czech-English, Russian-English, and Japanese-English. We push the limit of our previous work -- bidirectional training for translation by scaling up two main factors, i.e. language pairs and model sizes, namely the Vega-MT system. As for language pairs, we scale the "bidirectional" up to the "multidirectional" settings, covering all participating languages, to exploit the common knowledge across languages, and transfer them to the downstream bilingual tasks. As for model sizes, we scale the Transformer-Big up to the extremely large model that owns nearly 4.7 Billion parameters, to fully enhance the model capacity for our Vega-MT. Also, we adopt the data augmentation strategies, e.g. cycle translation for monolingual data, and bidirectional self-training for bilingual and monolingual data, to comprehensively exploit the bilingual and monolingual data. To adapt our Vega-MT to the general domain test set, generalization tuning is designed. Based on the official automatic scores of constrained systems, in terms of the sacreBLEU shown in Figure-1, we got the 1st place on {Zh-En (33.5), En-Zh (49.7), De-En (33.7), En-De (37.8), Cs-En (54.9), En-Cs (41.4) and En-Ru (32.7)}, 2nd place on {Ru-En (45.1) and Ja-En (25.6)}, and 3rd place on {En-Ja(41.5)}, respectively; W.R.T the COMET, we got the 1st place on {Zh-En (45.1), En-Zh (61.7), De-En (58.0), En-De (63.2), Cs-En (74.7), Ru-En (64.9), En-Ru (69.6) and En-Ja (65.1)}, 2nd place on {En-Cs (95.3) and Ja-En (40.6)}, respectively. 12 authors · Sep 19, 2022
- Captions Are Worth a Thousand Words: Enhancing Product Retrieval with Pretrained Image-to-Text Models This paper explores the usage of multimodal image-to-text models to enhance text-based item retrieval. We propose utilizing pre-trained image captioning and tagging models, such as instructBLIP and CLIP, to generate text-based product descriptions which are combined with existing text descriptions. Our work is particularly impactful for smaller eCommerce businesses who are unable to maintain the high-quality text descriptions necessary to effectively perform item retrieval for search and recommendation use cases. We evaluate the searchability of ground-truth text, image-generated text, and combinations of both texts on several subsets of Amazon's publicly available ESCI dataset. The results demonstrate the dual capability of our proposed models to enhance the retrieval of existing text and generate highly-searchable standalone descriptions. 4 authors · Feb 13, 2024
2 AI training resources for GLAM: a snapshot We take a snapshot of current resources available for teaching and learning AI with a focus on the Galleries, Libraries, Archives and Museums (GLAM) community. The review was carried out in 2021 and 2022. The review provides an overview of material we identified as being relevant, offers a description of this material and makes recommendations for future work in this area. 6 authors · May 10, 2022
- CLUE: A Chinese Language Understanding Evaluation Benchmark The advent of natural language understanding (NLU) benchmarks for English, such as GLUE and SuperGLUE allows new NLU models to be evaluated across a diverse set of tasks. These comprehensive benchmarks have facilitated a broad range of research and applications in natural language processing (NLP). The problem, however, is that most such benchmarks are limited to English, which has made it difficult to replicate many of the successes in English NLU for other languages. To help remedy this issue, we introduce the first large-scale Chinese Language Understanding Evaluation (CLUE) benchmark. CLUE is an open-ended, community-driven project that brings together 9 tasks spanning several well-established single-sentence/sentence-pair classification tasks, as well as machine reading comprehension, all on original Chinese text. To establish results on these tasks, we report scores using an exhaustive set of current state-of-the-art pre-trained Chinese models (9 in total). We also introduce a number of supplementary datasets and additional tools to help facilitate further progress on Chinese NLU. Our benchmark is released at https://www.CLUEbenchmarks.com 32 authors · Apr 13, 2020
1 Building a Japanese Document-Level Relation Extraction Dataset Assisted by Cross-Lingual Transfer Document-level Relation Extraction (DocRE) is the task of extracting all semantic relationships from a document. While studies have been conducted on English DocRE, limited attention has been given to DocRE in non-English languages. This work delves into effectively utilizing existing English resources to promote DocRE studies in non-English languages, with Japanese as the representative case. As an initial attempt, we construct a dataset by transferring an English dataset to Japanese. However, models trained on such a dataset suffer from low recalls. We investigate the error cases and attribute the failure to different surface structures and semantics of documents translated from English and those written by native speakers. We thus switch to explore if the transferred dataset can assist human annotation on Japanese documents. In our proposal, annotators edit relation predictions from a model trained on the transferred dataset. Quantitative analysis shows that relation recommendations suggested by the model help reduce approximately 50% of the human edit steps compared with the previous approach. Experiments quantify the performance of existing DocRE models on our collected dataset, portraying the challenges of Japanese and cross-lingual DocRE. 3 authors · Apr 25, 2024
- Bianet: A Parallel News Corpus in Turkish, Kurdish and English We present a new open-source parallel corpus consisting of news articles collected from the Bianet magazine, an online newspaper that publishes Turkish news, often along with their translations in English and Kurdish. In this paper, we describe the collection process of the corpus and its statistical properties. We validate the benefit of using the Bianet corpus by evaluating bilingual and multilingual neural machine translation models in English-Turkish and English-Kurdish directions. 1 authors · May 14, 2018
1 MTet: Multi-domain Translation for English and Vietnamese We introduce MTet, the largest publicly available parallel corpus for English-Vietnamese translation. MTet consists of 4.2M high-quality training sentence pairs and a multi-domain test set refined by the Vietnamese research community. Combining with previous works on English-Vietnamese translation, we grow the existing parallel dataset to 6.2M sentence pairs. We also release the first pretrained model EnViT5 for English and Vietnamese languages. Combining both resources, our model significantly outperforms previous state-of-the-art results by up to 2 points in translation BLEU score, while being 1.6 times smaller. 8 authors · Oct 11, 2022
- HEVAL: Yet Another Human Evaluation Metric Machine translation evaluation is a very important activity in machine translation development. Automatic evaluation metrics proposed in literature are inadequate as they require one or more human reference translations to compare them with output produced by machine translation. This does not always give accurate results as a text can have several different translations. Human evaluation metrics, on the other hand, lacks inter-annotator agreement and repeatability. In this paper we have proposed a new human evaluation metric which addresses these issues. Moreover this metric also provides solid grounds for making sound assumptions on the quality of the text produced by a machine translation. 4 authors · Nov 15, 2013
- Investigating Language Preference of Multilingual RAG Systems Multilingual Retrieval-Augmented Generation (mRAG) systems enhance language models by integrating external multilingual information to produce context-aware responses. However, mRAG systems struggle with retrieving relevant information due to linguistic variations between queries and documents, generating inconsistent responses when multilingual sources conflict. In this work, we systematically investigate language preferences in both retrieval and generation of mRAG through a series of experiments. Our analysis indicates that retrievers tend to prefer high-resource and query languages, yet this preference does not consistently improve generation performance. Moreover, we observe that generators prefer the query language or Latin scripts, leading to inconsistent outputs. To overcome these issues, we propose Dual Knowledge Multilingual RAG (DKM-RAG), a simple yet effective framework that fuses translated multilingual passages with complementary model knowledge. Empirical results demonstrate that DKM-RAG mitigates language preference in generation and enhances performance across diverse linguistic settings. 2 authors · Feb 16
- (Perhaps) Beyond Human Translation: Harnessing Multi-Agent Collaboration for Translating Ultra-Long Literary Texts Recent advancements in machine translation (MT) have significantly enhanced translation quality across various domains. However, the translation of literary texts remains a formidable challenge due to their complex language, figurative expressions, and cultural nuances. In this work, we introduce a novel multi-agent framework based on large language models (LLMs) for literary translation, implemented as a company called TransAgents, which mirrors traditional translation publication process by leveraging the collective capabilities of multiple agents, to address the intricate demands of translating literary works. To evaluate the effectiveness of our system, we propose two innovative evaluation strategies: Monolingual Human Preference (MHP) and Bilingual LLM Preference (BLP). MHP assesses translations from the perspective of monolingual readers of the target language, while BLP uses advanced LLMs to compare translations directly with the original texts. Empirical findings indicate that despite lower d-BLEU scores, translations from TransAgents are preferred by both human evaluators and LLMs over human-written references, particularly in genres requiring domain-specific knowledge. We also highlight the strengths and limitations of TransAgents through case studies and suggests directions for future research. 4 authors · May 20, 2024
- Subjective and Objective Evaluation of English to Urdu Machine Translation Machine translation is research based area where evaluation is very important phenomenon for checking the quality of MT output. The work is based on the evaluation of English to Urdu Machine translation. In this research work we have evaluated the translation quality of Urdu language which has been translated by using different Machine Translation systems like Google, Babylon and Ijunoon. The evaluation process is done by using two approaches - Human evaluation and Automatic evaluation. We have worked for both the approaches where in human evaluation emphasis is given to scales and parameters while in automatic evaluation emphasis is given to some automatic metric such as BLEU, GTM, METEOR and ATEC. 3 authors · Oct 2, 2013
- mRAT-SQL+GAP:A Portuguese Text-to-SQL Transformer The translation of natural language questions to SQL queries has attracted growing attention, in particular in connection with transformers and similar language models. A large number of techniques are geared towards the English language; in this work, we thus investigated translation to SQL when input questions are given in the Portuguese language. To do so, we properly adapted state-of-the-art tools and resources. We changed the RAT-SQL+GAP system by relying on a multilingual BART model (we report tests with other language models), and we produced a translated version of the Spider dataset. Our experiments expose interesting phenomena that arise when non-English languages are targeted; in particular, it is better to train with original and translated training datasets together, even if a single target language is desired. This multilingual BART model fine-tuned with a double-size training dataset (English and Portuguese) achieved 83% of the baseline, making inferences for the Portuguese test dataset. This investigation can help other researchers to produce results in Machine Learning in a language different from English. Our multilingual ready version of RAT-SQL+GAP and the data are available, open-sourced as mRAT-SQL+GAP at: https://github.com/C4AI/gap-text2sql 2 authors · Oct 7, 2021
- DivEMT: Neural Machine Translation Post-Editing Effort Across Typologically Diverse Languages We introduce DivEMT, the first publicly available post-editing study of Neural Machine Translation (NMT) over a typologically diverse set of target languages. Using a strictly controlled setup, 18 professional translators were instructed to translate or post-edit the same set of English documents into Arabic, Dutch, Italian, Turkish, Ukrainian, and Vietnamese. During the process, their edits, keystrokes, editing times and pauses were recorded, enabling an in-depth, cross-lingual evaluation of NMT quality and post-editing effectiveness. Using this new dataset, we assess the impact of two state-of-the-art NMT systems, Google Translate and the multilingual mBART-50 model, on translation productivity. We find that post-editing is consistently faster than translation from scratch. However, the magnitude of productivity gains varies widely across systems and languages, highlighting major disparities in post-editing effectiveness for languages at different degrees of typological relatedness to English, even when controlling for system architecture and training data size. We publicly release the complete dataset including all collected behavioral data, to foster new research on the translation capabilities of NMT systems for typologically diverse languages. 4 authors · May 24, 2022
1 Multiresolution Textual Inversion We extend Textual Inversion to learn pseudo-words that represent a concept at different resolutions. This allows us to generate images that use the concept with different levels of detail and also to manipulate different resolutions using language. Once learned, the user can generate images at different levels of agreement to the original concept; "A photo of S^*(0)" produces the exact object while the prompt "A photo of S^*(0.8)" only matches the rough outlines and colors. Our framework allows us to generate images that use different resolutions of an image (e.g. details, textures, styles) as separate pseudo-words that can be composed in various ways. We open-soure our code in the following URL: https://github.com/giannisdaras/multires_textual_inversion 2 authors · Nov 30, 2022
2 A tailored Handwritten-Text-Recognition System for Medieval Latin The Bavarian Academy of Sciences and Humanities aims to digitize its Medieval Latin Dictionary. This dictionary entails record cards referring to lemmas in medieval Latin, a low-resource language. A crucial step of the digitization process is the Handwritten Text Recognition (HTR) of the handwritten lemmas found on these record cards. In our work, we introduce an end-to-end pipeline, tailored to the medieval Latin dictionary, for locating, extracting, and transcribing the lemmas. We employ two state-of-the-art (SOTA) image segmentation models to prepare the initial data set for the HTR task. Furthermore, we experiment with different transformer-based models and conduct a set of experiments to explore the capabilities of different combinations of vision encoders with a GPT-2 decoder. Additionally, we also apply extensive data augmentation resulting in a highly competitive model. The best-performing setup achieved a Character Error Rate (CER) of 0.015, which is even superior to the commercial Google Cloud Vision model, and shows more stable performance. 7 authors · Aug 18, 2023
- Efficient Technical Term Translation: A Knowledge Distillation Approach for Parenthetical Terminology Translation This paper addresses the challenge of accurately translating technical terms, which are crucial for clear communication in specialized fields. We introduce the Parenthetical Terminology Translation (PTT) task, designed to mitigate potential inaccuracies by displaying the original term in parentheses alongside its translation. To implement this approach, we generated a representative PTT dataset using a collaborative approach with large language models and applied knowledge distillation to fine-tune traditional Neural Machine Translation (NMT) models and small-sized Large Language Models (sLMs). Additionally, we developed a novel evaluation metric to assess both overall translation accuracy and the correct parenthetical presentation of terms. Our findings indicate that sLMs did not consistently outperform NMT models, with fine-tuning proving more effective than few-shot prompting, particularly in models with continued pre-training in the target language. These insights contribute to the advancement of more reliable terminology translation methodologies. 5 authors · Oct 1, 2024
- Correcting diacritics and typos with a ByT5 transformer model Due to the fast pace of life and online communications and the prevalence of English and the QWERTY keyboard, people tend to forgo using diacritics, make typographical errors (typos) when typing in other languages. Restoring diacritics and correcting spelling is important for proper language use and the disambiguation of texts for both humans and downstream algorithms. However, both of these problems are typically addressed separately: the state-of-the-art diacritics restoration methods do not tolerate other typos, but classical spellcheckers also cannot deal adequately with all the diacritics missing. In this work, we tackle both problems at once by employing the newly-developed universal ByT5 byte-level seq2seq transformer model that requires no language-specific model structures. For a comparison, we perform diacritics restoration on benchmark datasets of 12 languages, with the addition of Lithuanian. The experimental investigation proves that our approach is able to achieve results (> 98%) comparable to the previous state-of-the-art, despite being trained less and on fewer data. Our approach is also able to restore diacritics in words not seen during training with > 76% accuracy. Our simultaneous diacritics restoration and typos correction approach reaches > 94% alpha-word accuracy on the 13 languages. It has no direct competitors and strongly outperforms classical spell-checking or dictionary-based approaches. We also demonstrate all the accuracies to further improve with more training. Taken together, this shows the great real-world application potential of our suggested methods to more data, languages, and error classes. 5 authors · Jan 31, 2022
- OpenKiwi: An Open Source Framework for Quality Estimation We introduce OpenKiwi, a PyTorch-based open source framework for translation quality estimation. OpenKiwi supports training and testing of word-level and sentence-level quality estimation systems, implementing the winning systems of the WMT 2015-18 quality estimation campaigns. We benchmark OpenKiwi on two datasets from WMT 2018 (English-German SMT and NMT), yielding state-of-the-art performance on the word-level tasks and near state-of-the-art in the sentence-level tasks. 5 authors · Feb 22, 2019
- Should we Stop Training More Monolingual Models, and Simply Use Machine Translation Instead? Most work in NLP makes the assumption that it is desirable to develop solutions in the native language in question. There is consequently a strong trend towards building native language models even for low-resource languages. This paper questions this development, and explores the idea of simply translating the data into English, thereby enabling the use of pretrained, and large-scale, English language models. We demonstrate empirically that a large English language model coupled with modern machine translation outperforms native language models in most Scandinavian languages. The exception to this is Finnish, which we assume is due to inferior translation quality. Our results suggest that machine translation is a mature technology, which raises a serious counter-argument for training native language models for low-resource languages. This paper therefore strives to make a provocative but important point. As English language models are improving at an unprecedented pace, which in turn improves machine translation, it is from an empirical and environmental stand-point more effective to translate data from low-resource languages into English, than to build language models for such languages. 3 authors · Apr 21, 2021
- Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs. 4 authors · Mar 23, 2024
1 Spanish and LLM Benchmarks: is MMLU Lost in Translation? The evaluation of Large Language Models (LLMs) is a key element in their continuous improvement process and many benchmarks have been developed to assess the performance of LLMs in different tasks and topics. As LLMs become adopted worldwide, evaluating them in languages other than English is increasingly important. However, most LLM benchmarks are simply translated using an automated tool and then run in the target language. This means that the results depend not only on the LLM performance in that language but also on the quality of the translation. In this paper, we consider the case of the well-known Massive Multitask Language Understanding (MMLU) benchmark. Selected categories of the benchmark are translated into Spanish using Azure Translator and ChatGPT4 and run on ChatGPT4. Next, the results are processed to identify the test items that produce different answers in Spanish and English. Those are then analyzed manually to understand if the automatic translation caused the change. The results show that a significant fraction of the failing items can be attributed to mistakes in the translation of the benchmark. These results make a strong case for improving benchmarks in languages other than English by at least revising the translations of the items and preferably by adapting the tests to the target language by experts. 7 authors · May 28, 2024
1 Adaptive Two-Phase Finetuning LLMs for Japanese Legal Text Retrieval Text Retrieval (TR) involves finding and retrieving text-based content relevant to a user's query from a large repository, with applications in real-world scenarios such as legal document retrieval. While most existing studies focus on English, limited work addresses Japanese contexts. In this paper, we introduce a new dataset specifically designed for Japanese legal contexts and propose a novel two-phase pipeline tailored to this domain. In the first phase, the model learns a broad understanding of global contexts, enhancing its generalization and adaptability to diverse queries. In the second phase, the model is fine-tuned to address complex queries specific to legal scenarios. Extensive experiments are conducted to demonstrate the superior performance of our method, which outperforms existing baselines. Furthermore, our pipeline proves effective in English contexts, surpassing comparable baselines on the MS MARCO dataset. We have made our code publicly available on GitHub, and the model checkpoints are accessible via HuggingFace. 5 authors · Dec 3, 2024
- edATLAS: An Efficient Disambiguation Algorithm for Texting in Languages with Abugida Scripts Abugida refers to a phonogram writing system where each syllable is represented using a single consonant or typographic ligature, along with a default vowel or optional diacritic(s) to denote other vowels. However, texting in these languages has some unique challenges in spite of the advent of devices with soft keyboard supporting custom key layouts. The number of characters in these languages is large enough to require characters to be spread over multiple views in the layout. Having to switch between views many times to type a single word hinders the natural thought process. This prevents popular usage of native keyboard layouts. On the other hand, supporting romanized scripts (native words transcribed using Latin characters) with language model based suggestions is also set back by the lack of uniform romanization rules. To this end, we propose a disambiguation algorithm and showcase its usefulness in two novel mutually non-exclusive input methods for languages natively using the abugida writing system: (a) disambiguation of ambiguous input for abugida scripts, and (b) disambiguation of word variants in romanized scripts. We benchmark these approaches using public datasets, and show an improvement in typing speed by 19.49%, 25.13%, and 14.89%, in Hindi, Bengali, and Thai, respectively, using Ambiguous Input, owing to the human ease of locating keys combined with the efficiency of our inference method. Our Word Variant Disambiguation (WDA) maps valid variants of romanized words, previously treated as Out-of-Vocab, to a vocabulary of 100k words with high accuracy, leading to an increase in Error Correction F1 score by 10.03% and Next Word Prediction (NWP) by 62.50% on average. 4 authors · Jan 4, 2021
- GlossLM: Multilingual Pretraining for Low-Resource Interlinear Glossing Language documentation projects often involve the creation of annotated text in a format such as interlinear glossed text (IGT), which captures fine-grained morphosyntactic analyses in a morpheme-by-morpheme format. However, there are few existing resources providing large amounts of standardized, easily accessible IGT data, limiting their applicability to linguistic research, and making it difficult to use such data in NLP modeling. We compile the largest existing corpus of IGT data from a variety of sources, covering over 450k examples across 1.8k languages, to enable research on crosslingual transfer and IGT generation. We normalize much of our data to follow a standard set of labels across languages. Furthermore, we explore the task of automatically generating IGT in order to aid documentation projects. As many languages lack sufficient monolingual data, we pretrain a large multilingual model on our corpus. We demonstrate the utility of this model by finetuning it on monolingual corpora, outperforming SOTA models by up to 6.6%. We will make our pretrained model and dataset available through Hugging Face, as well as provide access through a web interface for use in language documentation efforts. 7 authors · Mar 10, 2024
- AbLit: A Resource for Analyzing and Generating Abridged Versions of English Literature Creating an abridged version of a text involves shortening it while maintaining its linguistic qualities. In this paper, we examine this task from an NLP perspective for the first time. We present a new resource, AbLit, which is derived from abridged versions of English literature books. The dataset captures passage-level alignments between the original and abridged texts. We characterize the linguistic relations of these alignments, and create automated models to predict these relations as well as to generate abridgements for new texts. Our findings establish abridgement as a challenging task, motivating future resources and research. The dataset is available at github.com/roemmele/AbLit. 5 authors · Feb 13, 2023
- Context-Aware Machine Translation with Source Coreference Explanation Despite significant improvements in enhancing the quality of translation, context-aware machine translation (MT) models underperform in many cases. One of the main reasons is that they fail to utilize the correct features from context when the context is too long or their models are overly complex. This can lead to the explain-away effect, wherein the models only consider features easier to explain predictions, resulting in inaccurate translations. To address this issue, we propose a model that explains the decisions made for translation by predicting coreference features in the input. We construct a model for input coreference by exploiting contextual features from both the input and translation output representations on top of an existing MT model. We evaluate and analyze our method in the WMT document-level translation task of English-German dataset, the English-Russian dataset, and the multilingual TED talk dataset, demonstrating an improvement of over 1.0 BLEU score when compared with other context-aware models. 3 authors · Apr 30, 2024
1 How to Design Translation Prompts for ChatGPT: An Empirical Study The recently released ChatGPT has demonstrated surprising abilities in natural language understanding and natural language generation. Machine translation relies heavily on the abilities of language understanding and generation. Thus, in this paper, we explore how to assist machine translation with ChatGPT. We adopt several translation prompts on a wide range of translations. Our experimental results show that ChatGPT with designed translation prompts can achieve comparable or better performance over commercial translation systems for high-resource language translations. We further evaluate the translation quality using multiple references, and ChatGPT achieves superior performance compared to commercial systems. We also conduct experiments on domain-specific translations, the final results show that ChatGPT is able to comprehend the provided domain keyword and adjust accordingly to output proper translations. At last, we perform few-shot prompts that show consistent improvement across different base prompts. Our work provides empirical evidence that ChatGPT still has great potential in translations. 3 authors · Apr 4, 2023
- The Archives Unleashed Project: Technology, Process, and Community to Improve Scholarly Access to Web Archives The Archives Unleashed project aims to improve scholarly access to web archives through a multi-pronged strategy involving tool creation, process modeling, and community building - all proceeding concurrently in mutually-reinforcing efforts. As we near the end of our initially-conceived three-year project, we report on our progress and share lessons learned along the way. The main contribution articulated in this paper is a process model that decomposes scholarly inquiries into four main activities: filter, extract, aggregate, and visualize. Based on the insight that these activities can be disaggregated across time, space, and tools, it is possible to generate "derivative products", using our Archives Unleashed Toolkit, that serve as useful starting points for scholarly inquiry. Scholars can download these products from the Archives Unleashed Cloud and manipulate them just like any other dataset, thus providing access to web archives without requiring any specialized knowledge. Over the past few years, our platform has processed over a thousand different collections from about two hundred users, totaling over 280 terabytes of web archives. 4 authors · Jan 15, 2020
- CiteME: Can Language Models Accurately Cite Scientific Claims? Thousands of new scientific papers are published each month. Such information overload complicates researcher efforts to stay current with the state-of-the-art as well as to verify and correctly attribute claims. We pose the following research question: Given a text excerpt referencing a paper, could an LM act as a research assistant to correctly identify the referenced paper? We advance efforts to answer this question by building a benchmark that evaluates the abilities of LMs in citation attribution. Our benchmark, CiteME, consists of text excerpts from recent machine learning papers, each referencing a single other paper. CiteME use reveals a large gap between frontier LMs and human performance, with LMs achieving only 4.2-18.5% accuracy and humans 69.7%. We close this gap by introducing CiteAgent, an autonomous system built on the GPT-4o LM that can also search and read papers, which achieves an accuracy of 35.3\% on CiteME. Overall, CiteME serves as a challenging testbed for open-ended claim attribution, driving the research community towards a future where any claim made by an LM can be automatically verified and discarded if found to be incorrect. 6 authors · Jul 10, 2024
- S2ORC: The Semantic Scholar Open Research Corpus We introduce S2ORC, a large corpus of 81.1M English-language academic papers spanning many academic disciplines. The corpus consists of rich metadata, paper abstracts, resolved bibliographic references, as well as structured full text for 8.1M open access papers. Full text is annotated with automatically-detected inline mentions of citations, figures, and tables, each linked to their corresponding paper objects. In S2ORC, we aggregate papers from hundreds of academic publishers and digital archives into a unified source, and create the largest publicly-available collection of machine-readable academic text to date. We hope this resource will facilitate research and development of tools and tasks for text mining over academic text. 5 authors · Nov 7, 2019
- xTower: A Multilingual LLM for Explaining and Correcting Translation Errors While machine translation (MT) systems are achieving increasingly strong performance on benchmarks, they often produce translations with errors and anomalies. Understanding these errors can potentially help improve the translation quality and user experience. This paper introduces xTower, an open large language model (LLM) built on top of TowerBase designed to provide free-text explanations for translation errors in order to guide the generation of a corrected translation. The quality of the generated explanations by xTower are assessed via both intrinsic and extrinsic evaluation. We ask expert translators to evaluate the quality of the explanations across two dimensions: relatedness towards the error span being explained and helpfulness in error understanding and improving translation quality. Extrinsically, we test xTower across various experimental setups in generating translation corrections, demonstrating significant improvements in translation quality. Our findings highlight xTower's potential towards not only producing plausible and helpful explanations of automatic translations, but also leveraging them to suggest corrected translations. 10 authors · Jun 27, 2024
- NusaX: Multilingual Parallel Sentiment Dataset for 10 Indonesian Local Languages Natural language processing (NLP) has a significant impact on society via technologies such as machine translation and search engines. Despite its success, NLP technology is only widely available for high-resource languages such as English and Chinese, while it remains inaccessible to many languages due to the unavailability of data resources and benchmarks. In this work, we focus on developing resources for languages in Indonesia. Despite being the second most linguistically diverse country, most languages in Indonesia are categorized as endangered and some are even extinct. We develop the first-ever parallel resource for 10 low-resource languages in Indonesia. Our resource includes datasets, a multi-task benchmark, and lexicons, as well as a parallel Indonesian-English dataset. We provide extensive analyses and describe the challenges when creating such resources. We hope that our work can spark NLP research on Indonesian and other underrepresented languages. 14 authors · May 31, 2022
1 MatSynth: A Modern PBR Materials Dataset We introduce MatSynth, a dataset of 4,000+ CC0 ultra-high resolution PBR materials. Materials are crucial components of virtual relightable assets, defining the interaction of light at the surface of geometries. Given their importance, significant research effort was dedicated to their representation, creation and acquisition. However, in the past 6 years, most research in material acquisiton or generation relied either on the same unique dataset, or on company-owned huge library of procedural materials. With this dataset we propose a significantly larger, more diverse, and higher resolution set of materials than previously publicly available. We carefully discuss the data collection process and demonstrate the benefits of this dataset on material acquisition and generation applications. The complete data further contains metadata with each material's origin, license, category, tags, creation method and, when available, descriptions and physical size, as well as 3M+ renderings of the augmented materials, in 1K, under various environment lightings. The MatSynth dataset is released through the project page at: https://www.gvecchio.com/matsynth. 2 authors · Jan 11, 2024
- "Vorbeşti Româneşte?" A Recipe to Train Powerful Romanian LLMs with English Instructions In recent years, Large Language Models (LLMs) have achieved almost human-like performance on various tasks. While some LLMs have been trained on multilingual data, most of the training data is in English; hence, their performance in English greatly exceeds other languages. To our knowledge, we are the first to collect and translate a large collection of texts, instructions, and benchmarks and train, evaluate, and release open-source LLMs tailored for Romanian. We evaluate our methods on four different categories, including academic benchmarks, MT-Bench (manually translated), and a professionally built historical, cultural, and social benchmark adapted to Romanian. We argue for the usefulness and high performance of RoLLMs by obtaining state-of-the-art results across the board. We publicly release all resources (i.e., data, training and evaluation code, models) to support and encourage research on Romanian LLMs while concurrently creating a generalizable recipe, adequate for other low or less-resourced languages. 13 authors · Jun 26, 2024
- A Survey on Retrieval-Augmented Text Generation Recently, retrieval-augmented text generation attracted increasing attention of the computational linguistics community. Compared with conventional generation models, retrieval-augmented text generation has remarkable advantages and particularly has achieved state-of-the-art performance in many NLP tasks. This paper aims to conduct a survey about retrieval-augmented text generation. It firstly highlights the generic paradigm of retrieval-augmented generation, and then it reviews notable approaches according to different tasks including dialogue response generation, machine translation, and other generation tasks. Finally, it points out some important directions on top of recent methods to facilitate future research. 5 authors · Feb 2, 2022
1 University of Cape Town's WMT22 System: Multilingual Machine Translation for Southern African Languages The paper describes the University of Cape Town's submission to the constrained track of the WMT22 Shared Task: Large-Scale Machine Translation Evaluation for African Languages. Our system is a single multilingual translation model that translates between English and 8 South / South East African Languages, as well as between specific pairs of the African languages. We used several techniques suited for low-resource machine translation (MT), including overlap BPE, back-translation, synthetic training data generation, and adding more translation directions during training. Our results show the value of these techniques, especially for directions where very little or no bilingual training data is available. 3 authors · Oct 21, 2022
- The ARIEL-CMU Systems for LoReHLT18 This paper describes the ARIEL-CMU submissions to the Low Resource Human Language Technologies (LoReHLT) 2018 evaluations for the tasks Machine Translation (MT), Entity Discovery and Linking (EDL), and detection of Situation Frames in Text and Speech (SF Text and Speech). 30 authors · Feb 24, 2019
- Using Machine Translation to Localize Task Oriented NLG Output One of the challenges in a task oriented natural language application like the Google Assistant, Siri, or Alexa is to localize the output to many languages. This paper explores doing this by applying machine translation to the English output. Using machine translation is very scalable, as it can work with any English output and can handle dynamic text, but otherwise the problem is a poor fit. The required quality bar is close to perfection, the range of sentences is extremely narrow, and the sentences are often very different than the ones in the machine translation training data. This combination of requirements is novel in the field of domain adaptation for machine translation. We are able to reach the required quality bar by building on existing ideas and adding new ones: finetuning on in-domain translations, adding sentences from the Web, adding semantic annotations, and using automatic error detection. The paper shares our approach and results, together with a distillation model to serve the translation models at scale. 9 authors · Jul 9, 2021
1 Arctic-Embed 2.0: Multilingual Retrieval Without Compromise This paper presents the training methodology of Arctic-Embed 2.0, a set of open-source text embedding models built for accurate and efficient multilingual retrieval. While prior works have suffered from degraded English retrieval quality, Arctic-Embed 2.0 delivers competitive retrieval quality on multilingual and English-only benchmarks, and supports Matryoshka Representation Learning (MRL) for efficient embedding storage with significantly lower compressed quality degradation compared to alternatives. We detail the design and implementation, presenting several important open research questions that arose during model development. We conduct experiments exploring these research questions and include extensive discussion aimed at fostering further discussion in this field. 4 authors · Dec 3, 2024
- Discourse Centric Evaluation of Machine Translation with a Densely Annotated Parallel Corpus Several recent papers claim human parity at sentence-level Machine Translation (MT), especially in high-resource languages. Thus, in response, the MT community has, in part, shifted its focus to document-level translation. Translating documents requires a deeper understanding of the structure and meaning of text, which is often captured by various kinds of discourse phenomena such as consistency, coherence, and cohesion. However, this renders conventional sentence-level MT evaluation benchmarks inadequate for evaluating the performance of context-aware MT systems. This paper presents a new dataset with rich discourse annotations, built upon the large-scale parallel corpus BWB introduced in Jiang et al. (2022). The new BWB annotation introduces four extra evaluation aspects, i.e., entity, terminology, coreference, and quotation, covering 15,095 entity mentions in both languages. Using these annotations, we systematically investigate the similarities and differences between the discourse structures of source and target languages, and the challenges they pose to MT. We discover that MT outputs differ fundamentally from human translations in terms of their latent discourse structures. This gives us a new perspective on the challenges and opportunities in document-level MT. We make our resource publicly available to spur future research in document-level MT and the generalization to other language translation tasks. 6 authors · May 18, 2023
- Bilingual BSARD: Extending Statutory Article Retrieval to Dutch Statutory article retrieval plays a crucial role in making legal information more accessible to both laypeople and legal professionals. Multilingual countries like Belgium present unique challenges for retrieval models due to the need for handling legal issues in multiple languages. Building on the Belgian Statutory Article Retrieval Dataset (BSARD) in French, we introduce the bilingual version of this dataset, bBSARD. The dataset contains parallel Belgian statutory articles in both French and Dutch, along with legal questions from BSARD and their Dutch translation. Using bBSARD, we conduct extensive benchmarking of retrieval models available for Dutch and French. Our benchmarking setup includes lexical models, zero-shot dense models, and fine-tuned small foundation models. Our experiments show that BM25 remains a competitive baseline compared to many zero-shot dense models in both languages. We also observe that while proprietary models outperform open alternatives in the zero-shot setting, they can be matched or surpassed by fine-tuning small language-specific models. Our dataset and evaluation code are publicly available. 4 authors · Dec 10, 2024
- Adapting Large Language Models for Document-Level Machine Translation Large language models (LLMs) have made significant strides in various natural language processing (NLP) tasks. Recent research shows that the moderately-sized LLMs often outperform their larger counterparts after task-specific fine-tuning. In this work, we delve into the process of adapting LLMs to specialize in document-level machine translation (DocMT) for a specific language pair. Firstly, we explore how prompt strategies affect downstream translation performance. Then, we conduct extensive experiments with two fine-tuning methods, three LLM backbones, and 18 translation tasks across nine language pairs. Our findings indicate that in some cases, these specialized models even surpass GPT-4 in translation performance, while they still significantly suffer from the off-target translation issue in others, even if they are exclusively fine-tuned on bilingual parallel documents. Furthermore, we provide an in-depth analysis of these LLMs tailored for DocMT, exploring aspects such as translation errors, discourse phenomena, training strategy, the scaling law of parallel documents, additional evaluation on recent test sets, and zero-shot crosslingual transfer. Our findings not only shed light on the strengths and limitations of LLM-based DocMT models but also provide a foundation for future research. 5 authors · Jan 12, 2024
1 Quati: A Brazilian Portuguese Information Retrieval Dataset from Native Speakers Despite Portuguese being one of the most spoken languages in the world, there is a lack of high-quality information retrieval datasets in that language. We present Quati, a dataset specifically designed for the Brazilian Portuguese language. It comprises a collection of queries formulated by native speakers and a curated set of documents sourced from a selection of high-quality Brazilian Portuguese websites. These websites are frequented more likely by real users compared to those randomly scraped, ensuring a more representative and relevant corpus. To label the query-document pairs, we use a state-of-the-art LLM, which shows inter-annotator agreement levels comparable to human performance in our assessments. We provide a detailed description of our annotation methodology to enable others to create similar datasets for other languages, providing a cost-effective way of creating high-quality IR datasets with an arbitrary number of labeled documents per query. Finally, we evaluate a diverse range of open-source and commercial retrievers to serve as baseline systems. Quati is publicly available at https://huggingface.co/datasets/unicamp-dl/quati and all scripts at https://github.com/unicamp-dl/quati . 5 authors · Apr 10, 2024
- TartuNLP @ SIGTYP 2024 Shared Task: Adapting XLM-RoBERTa for Ancient and Historical Languages We present our submission to the unconstrained subtask of the SIGTYP 2024 Shared Task on Word Embedding Evaluation for Ancient and Historical Languages for morphological annotation, POS-tagging, lemmatization, character- and word-level gap-filling. We developed a simple, uniform, and computationally lightweight approach based on the adapters framework using parameter-efficient fine-tuning. We applied the same adapter-based approach uniformly to all tasks and 16 languages by fine-tuning stacked language- and task-specific adapters. Our submission obtained an overall second place out of three submissions, with the first place in word-level gap-filling. Our results show the feasibility of adapting language models pre-trained on modern languages to historical and ancient languages via adapter training. 2 authors · Apr 19, 2024
- Masakhane -- Machine Translation For Africa Africa has over 2000 languages. Despite this, African languages account for a small portion of available resources and publications in Natural Language Processing (NLP). This is due to multiple factors, including: a lack of focus from government and funding, discoverability, a lack of community, sheer language complexity, difficulty in reproducing papers and no benchmarks to compare techniques. To begin to address the identified problems, MASAKHANE, an open-source, continent-wide, distributed, online research effort for machine translation for African languages, was founded. In this paper, we discuss our methodology for building the community and spurring research from the African continent, as well as outline the success of the community in terms of addressing the identified problems affecting African NLP. 25 authors · Mar 13, 2020
1 Data Processing for the OpenGPT-X Model Family This paper presents a comprehensive overview of the data preparation pipeline developed for the OpenGPT-X project, a large-scale initiative aimed at creating open and high-performance multilingual large language models (LLMs). The project goal is to deliver models that cover all major European languages, with a particular focus on real-world applications within the European Union. We explain all data processing steps, starting with the data selection and requirement definition to the preparation of the final datasets for model training. We distinguish between curated data and web data, as each of these categories is handled by distinct pipelines, with curated data undergoing minimal filtering and web data requiring extensive filtering and deduplication. This distinction guided the development of specialized algorithmic solutions for both pipelines. In addition to describing the processing methodologies, we provide an in-depth analysis of the datasets, increasing transparency and alignment with European data regulations. Finally, we share key insights and challenges faced during the project, offering recommendations for future endeavors in large-scale multilingual data preparation for LLMs. 22 authors · Oct 11, 2024
- Model and Data Transfer for Cross-Lingual Sequence Labelling in Zero-Resource Settings Zero-resource cross-lingual transfer approaches aim to apply supervised models from a source language to unlabelled target languages. In this paper we perform an in-depth study of the two main techniques employed so far for cross-lingual zero-resource sequence labelling, based either on data or model transfer. Although previous research has proposed translation and annotation projection (data-based cross-lingual transfer) as an effective technique for cross-lingual sequence labelling, in this paper we experimentally demonstrate that high capacity multilingual language models applied in a zero-shot (model-based cross-lingual transfer) setting consistently outperform data-based cross-lingual transfer approaches. A detailed analysis of our results suggests that this might be due to important differences in language use. More specifically, machine translation often generates a textual signal which is different to what the models are exposed to when using gold standard data, which affects both the fine-tuning and evaluation processes. Our results also indicate that data-based cross-lingual transfer approaches remain a competitive option when high-capacity multilingual language models are not available. 3 authors · Oct 23, 2022
21 ReALM: Reference Resolution As Language Modeling Reference resolution is an important problem, one that is essential to understand and successfully handle context of different kinds. This context includes both previous turns and context that pertains to non-conversational entities, such as entities on the user's screen or those running in the background. While LLMs have been shown to be extremely powerful for a variety of tasks, their use in reference resolution, particularly for non-conversational entities, remains underutilized. This paper demonstrates how LLMs can be used to create an extremely effective system to resolve references of various types, by showing how reference resolution can be converted into a language modeling problem, despite involving forms of entities like those on screen that are not traditionally conducive to being reduced to a text-only modality. We demonstrate large improvements over an existing system with similar functionality across different types of references, with our smallest model obtaining absolute gains of over 5% for on-screen references. We also benchmark against GPT-3.5 and GPT-4, with our smallest model achieving performance comparable to that of GPT-4, and our larger models substantially outperforming it. 8 authors · Mar 29, 2024 2
- LexMatcher: Dictionary-centric Data Collection for LLM-based Machine Translation The fine-tuning of open-source large language models (LLMs) for machine translation has recently received considerable attention, marking a shift towards data-centric research from traditional neural machine translation. However, the area of data collection for instruction fine-tuning in machine translation remains relatively underexplored. In this paper, we present LexMatcher, a simple yet effective method for data collection that leverages bilingual dictionaries to generate a dataset, the design of which is driven by the coverage of senses found in these dictionaries. The dataset comprises a subset retrieved from an existing corpus and a smaller synthesized subset which supplements the infrequent senses of polysemous words. Utilizing LLaMA2 as our base model, our approach outperforms the established baselines on the WMT2022 test sets and also exhibits significant performance improvements in tasks related to word sense disambiguation and specialized terminology translation. These results underscore the effectiveness of LexMatcher in enhancing LLM-based machine translation. 5 authors · Jun 3, 2024