new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

May 7

GAMMA: Revisiting Template-based Automated Program Repair via Mask Prediction

Automated program repair (APR) aims to fix software bugs without human intervention and template-based APR has been widely investigated with promising results. However, it is challenging for template-based APR to select the appropriate donor code, which is an important repair ingredient for generating candidate patches. Inappropriate donor code may cause plausible but incorrect patch generation even with correct fix patterns, limiting the repair performance. In this paper, we aim to revisit template-based APR, and propose GAMMA, to directly leverage large pre-trained language models for donor code generation. Our main insight is that instead of retrieving donor code in the local buggy file, we can directly predict the correct code tokens based on the context code snippets and repair patterns by a cloze task. Specifically, (1) GAMMA revises a variety of fix templates from state-of-the-art template-based APR techniques (i.e., TBar) and transforms them into mask patterns. (2) GAMMA adopts a pre-trained language model to predict the correct code for masked code as a fill-in-the-blank task. The experimental results demonstrate that GAMMA correctly repairs 82 bugs on Defects4J-v1.2, which achieves 20.59\% (14 bugs) and 26.15\% (17 bugs) improvement over the previous state-of-the-art template-based approach TBar and learning-based one Recoder. Furthermore, GAMMA repairs 45 bugs and 22 bugs from the additional Defects4J-v2.0 and QuixBugs, indicating the generalizability of GAMMA in addressing the dataset overfitting issue. We also prove that adopting other pre-trained language models can provide substantial advancement, e.g., CodeBERT-based and ChatGPT-based GAMMA is able to fix 80 and 67 bugs on Defects4J-v1.2, indicating the scalability of GAMMA. Overall, our study highlights the promising future of adopting pre-trained models to generate correct patches on top of fix patterns.

Combining Fine-Tuning and LLM-based Agents for Intuitive Smart Contract Auditing with Justifications

Smart contracts are decentralized applications built atop blockchains like Ethereum. Recent research has shown that large language models (LLMs) have potential in auditing smart contracts, but the state-of-the-art indicates that even GPT-4 can achieve only 30% precision (when both decision and justification are correct). This is likely because off-the-shelf LLMs were primarily pre-trained on a general text/code corpus and not fine-tuned on the specific domain of Solidity smart contract auditing. In this paper, we propose TrustLLM, a general framework that combines fine-tuning and LLM-based agents for intuitive smart contract auditing with justifications. Specifically, TrustLLM is inspired by the observation that expert human auditors first perceive what could be wrong and then perform a detailed analysis of the code to identify the cause. As such, TrustLLM employs a two-stage fine-tuning approach: it first tunes a Detector model to make decisions and then tunes a Reasoner model to generate causes of vulnerabilities. However, fine-tuning alone faces challenges in accurately identifying the optimal cause of a vulnerability. Therefore, we introduce two LLM-based agents, the Ranker and Critic, to iteratively select and debate the most suitable cause of vulnerability based on the output of the fine-tuned Reasoner model. To evaluate TrustLLM, we collected a balanced dataset with 1,734 positive and 1,810 negative samples to fine-tune TrustLLM. We then compared it with traditional fine-tuned models (CodeBERT, GraphCodeBERT, CodeT5, and UnixCoder) as well as prompt learning-based LLMs (GPT4, GPT-3.5, and CodeLlama-13b/34b). On a dataset of 263 real smart contract vulnerabilities, TrustLLM achieves an F1 score of 91.21% and an accuracy of 91.11%. The causes generated by TrustLLM achieved a consistency of about 38% compared to the ground truth causes.

CodeBERTScore: Evaluating Code Generation with Pretrained Models of Code

Since the rise of neural models of code that can generate long expressions and statements rather than a single next-token, one of the major problems has been reliably evaluating their generated output. In this paper, we propose CodeBERTScore: an automatic evaluation metric for code generation, which builds on BERTScore (Zhang et al., 2020). Instead of measuring exact token matching as BLEU, CodeBERTScore computes a soft similarity score between each token in the generated code and in the reference code, using the contextual encodings of large pretrained models. Further, instead of encoding only the generated tokens as in BERTScore, CodeBERTScore also encodes the programmatic context surrounding the generated code. We perform an extensive evaluation of CodeBERTScore across four programming languages. We find that CodeBERTScore achieves a higher correlation with human preference and with functional correctness than all existing metrics. That is, generated code that receives a higher score by CodeBERTScore is more likely to be preferred by humans, as well as to function correctly when executed. Finally, while CodeBERTScore can be used with a multilingual CodeBERT as its base model, we release five language-specific pretrained models to use with our publicly available code at https://github.com/neulab/code-bert-score . Our language-specific models have been downloaded more than 25,000 times from the Huggingface Hub.

Model-Agnostic Syntactical Information for Pre-Trained Programming Language Models

Pre-trained Programming Language Models (PPLMs) achieved many recent states of the art results for many code-related software engineering tasks. Though some studies use data flow or propose tree-based models that utilize Abstract Syntax Tree (AST), most PPLMs do not fully utilize the rich syntactical information in source code. Still, the input is considered a sequence of tokens. There are two issues; the first is computational inefficiency due to the quadratic relationship between input length and attention complexity. Second, any syntactical information, when needed as an extra input to the current PPLMs, requires the model to be pre-trained from scratch, wasting all the computational resources already used for pre-training the current models. In this work, we propose Named Entity Recognition (NER) adapters, lightweight modules that can be inserted into Transformer blocks to learn type information extracted from the AST. These adapters can be used with current PPLMs such as CodeBERT, GraphCodeBERT, and CodeT5. We train the NER adapters using a novel Token Type Classification objective function (TTC). We insert our proposed work in CodeBERT, building CodeBERTER, and evaluate the performance on two tasks of code refinement and code summarization. CodeBERTER improves the accuracy of code refinement from 16.4 to 17.8 while using 20% of training parameter budget compared to the fully fine-tuning approach, and the BLEU score of code summarization from 14.75 to 15.90 while reducing 77% of training parameters compared to the fully fine-tuning approach.

CodePrompt: Improving Source Code-Related Classification with Knowledge Features through Prompt Learning

Researchers have explored the potential of utilizing pre-trained language models, such as CodeBERT, to improve source code-related tasks. Previous studies have mainly relied on CodeBERT's text embedding capability and the `[CLS]' sentence embedding information as semantic representations for fine-tuning downstream source code-related tasks. However, these methods require additional neural network layers to extract effective features, resulting in higher computational costs. Furthermore, existing approaches have not leveraged the rich knowledge contained in both source code and related text, which can lead to lower accuracy. This paper presents a novel approach, CodePrompt, which utilizes rich knowledge recalled from a pre-trained model by prompt learning and an attention mechanism to improve source code-related classification tasks. Our approach initially motivates the language model with prompt information to retrieve abundant knowledge associated with the input as representative features, thus avoiding the need for additional neural network layers and reducing computational costs. Subsequently, we employ an attention mechanism to aggregate multiple layers of related knowledge for each task as final features to boost their accuracy. We conducted extensive experiments on four downstream source code-related tasks to evaluate our approach and our results demonstrate that CodePrompt achieves new state-of-the-art performance on the accuracy metric while also exhibiting computation cost-saving capabilities.

ContraBERT: Enhancing Code Pre-trained Models via Contrastive Learning

Large-scale pre-trained models such as CodeBERT, GraphCodeBERT have earned widespread attention from both academia and industry. Attributed to the superior ability in code representation, they have been further applied in multiple downstream tasks such as clone detection, code search and code translation. However, it is also observed that these state-of-the-art pre-trained models are susceptible to adversarial attacks. The performance of these pre-trained models drops significantly with simple perturbations such as renaming variable names. This weakness may be inherited by their downstream models and thereby amplified at an unprecedented scale. To this end, we propose an approach namely ContraBERT that aims to improve the robustness of pre-trained models via contrastive learning. Specifically, we design nine kinds of simple and complex data augmentation operators on the programming language (PL) and natural language (NL) data to construct different variants. Furthermore, we continue to train the existing pre-trained models by masked language modeling (MLM) and contrastive pre-training task on the original samples with their augmented variants to enhance the robustness of the model. The extensive experiments demonstrate that ContraBERT can effectively improve the robustness of the existing pre-trained models. Further study also confirms that these robustness-enhanced models provide improvements as compared to original models over four popular downstream tasks.

CodeCoR: An LLM-Based Self-Reflective Multi-Agent Framework for Code Generation

Code generation aims to produce code that fulfills requirements written in natural languages automatically. Large language Models (LLMs) like ChatGPT have demonstrated promising effectiveness in this area. Nonetheless, these LLMs often fail to ensure the syntactic and semantic correctness of the generated code. Recently, researchers proposed multi-agent frameworks that guide LLMs with different prompts to analyze programming tasks, generate code, perform testing in a sequential workflow. However, the performance of the workflow is not robust as the code generation depends on the performance of each agent. To address this challenge, we propose CodeCoR, a self-reflective multi-agent framework that evaluates the effectiveness of each agent and their collaborations. Specifically, for a given task description, four agents in CodeCoR generate prompts, code, test cases, and repair advice, respectively. Each agent generates more than one output and prunes away the low-quality ones. The generated code is tested in the local environment: the code that fails to pass the generated test cases is sent to the repair agent and the coding agent re-generates the code based on repair advice. Finally, the code that passes the most number of generated test cases is returned to users. Our experiments on four widely used datasets, HumanEval, HumanEval-ET, MBPP, and MBPP-ET, demonstrate that CodeCoR significantly outperforms existing baselines (e.g., CodeCoT and MapCoder), achieving an average Pass@1 score of 77.8%.

Compressing Pre-trained Models of Code into 3 MB

Although large pre-trained models of code have delivered significant advancements in various code processing tasks, there is an impediment to the wide and fluent adoption of these powerful models in software developers' daily workflow: these large models consume hundreds of megabytes of memory and run slowly on personal devices, which causes problems in model deployment and greatly degrades the user experience. It motivates us to propose Compressor, a novel approach that can compress the pre-trained models of code into extremely small models with negligible performance sacrifice. Our proposed method formulates the design of tiny models as simplifying the pre-trained model architecture: searching for a significantly smaller model that follows an architectural design similar to the original pre-trained model. Compressor proposes a genetic algorithm (GA)-based strategy to guide the simplification process. Prior studies found that a model with higher computational cost tends to be more powerful. Inspired by this insight, the GA algorithm is designed to maximize a model's Giga floating-point operations (GFLOPs), an indicator of the model computational cost, to satisfy the constraint of the target model size. Then, we use the knowledge distillation technique to train the small model: unlabelled data is fed into the large model and the outputs are used as labels to train the small model. We evaluate Compressor with two state-of-the-art pre-trained models, i.e., CodeBERT and GraphCodeBERT, on two important tasks, i.e., vulnerability prediction and clone detection. We use our method to compress pre-trained models to a size (3 MB), which is 160times smaller than the original size. The results show that compressed CodeBERT and GraphCodeBERT are 4.31times and 4.15times faster than the original model at inference, respectively. More importantly, ...

Are Code Pre-trained Models Powerful to Learn Code Syntax and Semantics?

Analysis of pre-trained code models also has revealed that they can effectively learn program syntax. However, these works are limited in analyzing code syntax and their distance-based approaches are not accurate due to the curse of high dimensionality. Furthermore, the study of the learnt program semantics of these models is rarely discussed. To further understand the code features learnt by these models, in this paper, we target two well-known representative code pre-trained models (i.e., CodeBERT and GraphCodeBERT) and devise a set of probing tasks for the syntax and semantics analysis. Specifically, on one hand, we design two probing tasks (i.e., syntax pair node prediction and token tagging prediction) to manipulate AST for the understanding of learnt program syntax. On the other hand, we design two tasks (i.e., semantic relationship prediction and semantic propagation prediction(inGraph) ) on the constructed control flow graph (CFG), data dependency graph (DDG) and control dependency graph (CDG) for the learnt program semantic analysis. In addition, to understand which kind of program semantics these pre-trained models can comprehend well, we conduct the statistical analysis for attention weights learnt by different heads and layers. Through extensive analysis in terms of program syntax and semantics, we have the following findings: 1) Both CodeBERT and GraphCodeBERT can learn the program syntax well. 2) Both CodeBERT and GraphCodeBERT can learn program semantics to different extents. GraphCodeBERT is superior to CodeBERT in learning program control flow and data dependency information but has a similar capability to CodeBERT in learning control dependency information. 3) Both CodeBERT and GraphCodeBERT can capture program semantics in the final layer of representation, but different attention heads and layers exhibit different roles in learning program semantics.

Natural Attack for Pre-trained Models of Code

Pre-trained models of code have achieved success in many important software engineering tasks. However, these powerful models are vulnerable to adversarial attacks that slightly perturb model inputs to make a victim model produce wrong outputs. Current works mainly attack models of code with examples that preserve operational program semantics but ignore a fundamental requirement for adversarial example generation: perturbations should be natural to human judges, which we refer to as naturalness requirement. In this paper, we propose ALERT (nAturaLnEss AwaRe ATtack), a black-box attack that adversarially transforms inputs to make victim models produce wrong outputs. Different from prior works, this paper considers the natural semantic of generated examples at the same time as preserving the operational semantic of original inputs. Our user study demonstrates that human developers consistently consider that adversarial examples generated by ALERT are more natural than those generated by the state-of-the-art work by Zhang et al. that ignores the naturalness requirement. On attacking CodeBERT, our approach can achieve attack success rates of 53.62%, 27.79%, and 35.78% across three downstream tasks: vulnerability prediction, clone detection and code authorship attribution. On GraphCodeBERT, our approach can achieve average success rates of 76.95%, 7.96% and 61.47% on the three tasks. The above outperforms the baseline by 14.07% and 18.56% on the two pre-trained models on average. Finally, we investigated the value of the generated adversarial examples to harden victim models through an adversarial fine-tuning procedure and demonstrated the accuracy of CodeBERT and GraphCodeBERT against ALERT-generated adversarial examples increased by 87.59% and 92.32%, respectively.

Program Merge Conflict Resolution via Neural Transformers

Collaborative software development is an integral part of the modern software development life cycle, essential to the success of large-scale software projects. When multiple developers make concurrent changes around the same lines of code, a merge conflict may occur. Such conflicts stall pull requests and continuous integration pipelines for hours to several days, seriously hurting developer productivity. To address this problem, we introduce MergeBERT, a novel neural program merge framework based on token-level three-way differencing and a transformer encoder model. By exploiting the restricted nature of merge conflict resolutions, we reformulate the task of generating the resolution sequence as a classification task over a set of primitive merge patterns extracted from real-world merge commit data. Our model achieves 63-68% accuracy for merge resolution synthesis, yielding nearly a 3x performance improvement over existing semi-structured, and 2x improvement over neural program merge tools. Finally, we demonstrate that MergeBERT is sufficiently flexible to work with source code files in Java, JavaScript, TypeScript, and C# programming languages. To measure the practical use of MergeBERT, we conduct a user study to evaluate MergeBERT suggestions with 25 developers from large OSS projects on 122 real-world conflicts they encountered. Results suggest that in practice, MergeBERT resolutions would be accepted at a higher rate than estimated by automatic metrics for precision and accuracy. Additionally, we use participant feedback to identify future avenues for improvement of MergeBERT.

CODESIM: Multi-Agent Code Generation and Problem Solving through Simulation-Driven Planning and Debugging

Large Language Models (LLMs) have made significant strides in code generation and problem solving. Current approaches employ external tool-based iterative debuggers that use compiler or other tool-based runtime feedback to refine coarse programs generated by various methods. However, the effectiveness of these approaches heavily relies on the quality of the initial code generation, which remains an open challenge. In this paper, we introduce CodeSim, a novel multi-agent code generation framework that comprehensively addresses the stages of program synthesis-planning, coding, and debugging-through a human-like perception approach. As human verifies their understanding of any algorithms through visual simulation, CodeSim uniquely features a method of plan verification and internal debugging through the step-by-step simulation of input/output. Extensive experiments across seven challenging competitive problem-solving and program synthesis benchmarks demonstrate CodeSim's remarkable code generation capabilities. Our framework achieves new state-of-the-art (pass@1) results-(HumanEval 95.1%, MBPP 90.7%, APPS 22%, and CodeContests 29.1%). Furthermore, our method shows potential for even greater enhancement when cascaded with external debuggers. To facilitate further research and development in this area, we have open-sourced our framework in this link (https://kagnlp.github.io/codesim.github.io/).

GraphCodeBERT: Pre-training Code Representations with Data Flow

Pre-trained models for programming language have achieved dramatic empirical improvements on a variety of code-related tasks such as code search, code completion, code summarization, etc. However, existing pre-trained models regard a code snippet as a sequence of tokens, while ignoring the inherent structure of code, which provides crucial code semantics and would enhance the code understanding process. We present GraphCodeBERT, a pre-trained model for programming language that considers the inherent structure of code. Instead of taking syntactic-level structure of code like abstract syntax tree (AST), we use data flow in the pre-training stage, which is a semantic-level structure of code that encodes the relation of "where-the-value-comes-from" between variables. Such a semantic-level structure is neat and does not bring an unnecessarily deep hierarchy of AST, the property of which makes the model more efficient. We develop GraphCodeBERT based on Transformer. In addition to using the task of masked language modeling, we introduce two structure-aware pre-training tasks. One is to predict code structure edges, and the other is to align representations between source code and code structure. We implement the model in an efficient way with a graph-guided masked attention function to incorporate the code structure. We evaluate our model on four tasks, including code search, clone detection, code translation, and code refinement. Results show that code structure and newly introduced pre-training tasks can improve GraphCodeBERT and achieves state-of-the-art performance on the four downstream tasks. We further show that the model prefers structure-level attentions over token-level attentions in the task of code search.

CodeCompose: A Large-Scale Industrial Deployment of AI-assisted Code Authoring

The rise of large language models (LLMs) has unlocked various applications of this technology in software development. In particular, generative LLMs have been shown to effectively power AI-based code authoring tools that can suggest entire statements or blocks of code during code authoring. In this paper we present CodeCompose, an AI-assisted code authoring tool developed and deployed at Meta internally. CodeCompose is based on the InCoder LLM that merges generative capabilities with bi-directionality. We have scaled up CodeCompose to serve tens of thousands of developers at Meta, across 10+ programming languages and several coding surfaces. We discuss unique challenges in terms of user experience and metrics that arise when deploying such tools in large-scale industrial settings. We present our experience in making design decisions about the model and system architecture for CodeCompose that addresses these challenges. Finally, we present metrics from our large-scale deployment of CodeCompose that shows its impact on Meta's internal code authoring experience over a 15-day time window, where 4.5 million suggestions were made by CodeCompose. Quantitative metrics reveal that (i) CodeCompose has an acceptance rate of 22% across several languages, and (ii) 8% of the code typed by users of CodeCompose is through accepting code suggestions from CodeCompose. Qualitative feedback indicates an overwhelming 91.5% positive reception for CodeCompose. In addition to assisting with code authoring, CodeCompose is also introducing other positive side effects such as encouraging developers to generate more in-code documentation, helping them with the discovery of new APIs, etc.

CoderEval: A Benchmark of Pragmatic Code Generation with Generative Pre-trained Models

Code generation models based on the pre-training and fine-tuning paradigm have been increasingly attempted by both academia and industry, resulting in well-known industrial models such as Codex, CodeGen, and PanGu-Coder. To evaluate the effectiveness of these models, multiple existing benchmarks are proposed, including only cases of generating a standalone function, i.e., a function that may invoke or access only built-in functions and standard libraries. However, non-standalone functions, which typically are not included in the existing benchmarks, constitute more than 70% of the functions in popular open-source projects, and evaluating models' effectiveness on standalone functions cannot reflect these models' effectiveness on pragmatic code generation scenarios. To help bridge the preceding gap, in this paper, we propose a benchmark named CoderEval, consisting of 230 Python and 230 Java code generation tasks carefully curated from popular real-world open-source projects and a self-contained execution platform to automatically assess the functional correctness of generated code. CoderEval supports code generation tasks from six levels of context dependency, where context refers to code elements such as types, APIs, variables, and consts defined outside the function under generation but within the dependent third-party libraries, current class, file, or project. CoderEval can be used to evaluate the effectiveness of models in generating code beyond only standalone functions. By evaluating three code generation models on CoderEval, we find that the effectiveness of these models in generating standalone functions is substantially higher than that in generating non-standalone functions. Our analysis highlights the current progress and pinpoints future directions to further improve a model's effectiveness by leveraging contextual information for pragmatic code generation.

Towards Efficient Fine-tuning of Pre-trained Code Models: An Experimental Study and Beyond

Recently, fine-tuning pre-trained code models such as CodeBERT on downstream tasks has achieved great success in many software testing and analysis tasks. While effective and prevalent, fine-tuning the pre-trained parameters incurs a large computational cost. In this paper, we conduct an extensive experimental study to explore what happens to layer-wise pre-trained representations and their encoded code knowledge during fine-tuning. We then propose efficient alternatives to fine-tune the large pre-trained code model based on the above findings. Our experimental study shows that (1) lexical, syntactic and structural properties of source code are encoded in the lower, intermediate, and higher layers, respectively, while the semantic property spans across the entire model. (2) The process of fine-tuning preserves most of the code properties. Specifically, the basic code properties captured by lower and intermediate layers are still preserved during fine-tuning. Furthermore, we find that only the representations of the top two layers change most during fine-tuning for various downstream tasks. (3) Based on the above findings, we propose Telly to efficiently fine-tune pre-trained code models via layer freezing. The extensive experimental results on five various downstream tasks demonstrate that training parameters and the corresponding time cost are greatly reduced, while performances are similar or better. Replication package including source code, datasets, and online Appendix is available at: https://github.com/DeepSoftwareAnalytics/Telly.

CodeAgent: Enhancing Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level Coding Challenges

Large Language Models (LLMs) have shown promise in automated code generation but typically excel only in simpler tasks such as generating standalone code units. Real-world software development, however, often involves complex code repositories (named repo) with complex dependencies and extensive documentation. To fill this gap, our research pivots towards evaluating LLMs in a more realistic setting -- real-world repo-level code generation. We introduce CodeAgentBench, a manually curated benchmark for repo-level code generation. This benchmark comprises five high-quality Python projects, encompassing a total of 101 samples. We assess nine leading LLMs on repo-level tasks and observe a decline in their performance. To tackle this, we present CodeAgent, a novel LLM-based agent framework that employs external tools for effective repo-level code generation. CodeAgent integrates five programming tools, enabling interaction with software artifacts for information retrieval, code symbol navigation, and code testing. We implement four agent strategies to optimize these tools' usage. Our experiments on CodeAgentBench show that CodeAgent enhances LLM performance significantly, with improvements ranging from 18.1\% to 250\%. Further tests on the HumanEval benchmark confirm CodeAgent's adaptability and efficacy across various code generation tasks. Notably, CodeAgent outperforms commercial products like Github Copilot, showcasing superior accuracy and efficiency. These results demonstrate CodeAgent's robust capabilities in code generation, highlighting its potential for real-world repo-level coding challenges.

CodeIF: Benchmarking the Instruction-Following Capabilities of Large Language Models for Code Generation

With the rapid advancement of Large Language Models (LLMs), the demand for robust instruction-following capabilities in code generation tasks has grown significantly. Code generation not only facilitates faster prototyping and automated testing, but also augments developer efficiency through improved maintainability and reusability of code. In this paper, we introduce CodeIF, the first benchmark specifically designed to assess the abilities of LLMs to adhere to task-oriented instructions within diverse code generation scenarios. CodeIF encompasses a broad range of tasks, including function synthesis, error debugging, algorithmic refactoring, and code explanation, thereby providing a comprehensive suite to evaluate model performance across varying complexity levels and programming domains. We conduct extensive experiments with LLMs, analyzing their strengths and limitations in meeting the demands of these tasks. The experimental results offer valuable insights into how well current models align with human instructions, as well as the extent to which they can generate consistent, maintainable, and contextually relevant code. Our findings not only underscore the critical role that instruction-following LLMs can play in modern software development, but also illuminate pathways for future research aimed at enhancing their adaptability, reliability, and overall effectiveness in automated code generation.

CoCoSoDa: Effective Contrastive Learning for Code Search

Code search aims to retrieve semantically relevant code snippets for a given natural language query. Recently, many approaches employing contrastive learning have shown promising results on code representation learning and greatly improved the performance of code search. However, there is still a lot of room for improvement in using contrastive learning for code search. In this paper, we propose CoCoSoDa to effectively utilize contrastive learning for code search via two key factors in contrastive learning: data augmentation and negative samples. Specifically, soft data augmentation is to dynamically masking or replacing some tokens with their types for input sequences to generate positive samples. Momentum mechanism is used to generate large and consistent representations of negative samples in a mini-batch through maintaining a queue and a momentum encoder. In addition, multimodal contrastive learning is used to pull together representations of code-query pairs and push apart the unpaired code snippets and queries. We conduct extensive experiments to evaluate the effectiveness of our approach on a large-scale dataset with six programming languages. Experimental results show that: (1) CoCoSoDa outperforms 14 baselines and especially exceeds CodeBERT, GraphCodeBERT, and UniXcoder by 13.3%, 10.5%, and 5.9% on average MRR scores, respectively. (2) The ablation studies show the effectiveness of each component of our approach. (3) We adapt our techniques to several different pre-trained models such as RoBERTa, CodeBERT, and GraphCodeBERT and observe a significant boost in their performance in code search. (4) Our model performs robustly under different hyper-parameters. Furthermore, we perform qualitative and quantitative analyses to explore reasons behind the good performance of our model.

ACECode: A Reinforcement Learning Framework for Aligning Code Efficiency and Correctness in Code Language Models

CodeLLMs have demonstrated remarkable advancements in software engineering tasks. However, while these models can generate functionally correct code, they often produce code that is inefficient in terms of runtime. This inefficiency is particularly problematic in resource-constrained environments, impacting software performance and sustainability. Existing approaches for optimizing code efficiency for CodeLLMs like SOAP and PIE exhibit certain limitations. SOAP requires a compatible execution environment and predefined test cases for iterative code modification, while PIE focuses on instruction tuning, improving efficiency but compromising correctness. These shortcomings highlight the need for a fine-tuning framework that optimizes both efficiency and correctness without relying on predefined test cases or specific execution environments. To bridge this gap, we introduce ACECode, a reinforcement learning-based fine-tuning framework that aligns CodeLLMs with dual objectives of efficiency and correctness. ACECode combines three key steps: (1) generating code with an actor CodeLLM, (2) calculating a training-free reward signal derived from code execution feedback for each generated code, and (3) optimizing the CodeLLM via Proximal Policy Optimization (PPO) algorithm. This reward signal enables joint assessment of efficiency and correctness without manual labeling. We evaluate ACECode by fine-tuning four SOTA (state-of-the-art) CodeLLMs and comparing their code with three baselines: original, instruction-tuned, and PIE-tuned CodeLLMs. Extensive experiment results suggest that significantly improves the efficiency and correctness of generated code against all baselines for all CodeLLMs. Specifically, CodeLLMs fine-tuned with ACECode improve pass@1 by 1.84% to 14.51% and reduce runtime in 65% to 72% of cases compared to original CodeLLMs.

Executable Code Actions Elicit Better LLM Agents

Large Language Model (LLM) agents, capable of performing a broad range of actions, such as invoking tools and controlling robots, show great potential in tackling real-world challenges. LLM agents are typically prompted to produce actions by generating JSON or text in a pre-defined format, which is usually limited by constrained action space (e.g., the scope of pre-defined tools) and restricted flexibility (e.g., inability to compose multiple tools). This work proposes to use executable Python code to consolidate LLM agents' actions into a unified action space (CodeAct). Integrated with a Python interpreter, CodeAct can execute code actions and dynamically revise prior actions or emit new actions upon new observations through multi-turn interactions. Our extensive analysis of 17 LLMs on API-Bank and a newly curated benchmark shows that CodeAct outperforms widely used alternatives (up to 20% higher success rate). The encouraging performance of CodeAct motivates us to build an open-source LLM agent that interacts with environments by executing interpretable code and collaborates with users using natural language. To this end, we collect an instruction-tuning dataset CodeActInstruct that consists of 7k multi-turn interactions using CodeAct. We show that it can be used with existing data to improve models in agent-oriented tasks without compromising their general capability. CodeActAgent, finetuned from Llama2 and Mistral, is integrated with Python interpreter and uniquely tailored to perform sophisticated tasks (e.g., model training) using existing libraries and autonomously self-debug.

Multi-line AI-assisted Code Authoring

CodeCompose is an AI-assisted code authoring tool powered by large language models (LLMs) that provides inline suggestions to 10's of thousands of developers at Meta. In this paper, we present how we scaled the product from displaying single-line suggestions to multi-line suggestions. This evolution required us to overcome several unique challenges in improving the usability of these suggestions for developers. First, we discuss how multi-line suggestions can have a 'jarring' effect, as the LLM's suggestions constantly move around the developer's existing code, which would otherwise result in decreased productivity and satisfaction. Second, multi-line suggestions take significantly longer to generate; hence we present several innovative investments we made to reduce the perceived latency for users. These model-hosting optimizations sped up multi-line suggestion latency by 2.5x. Finally, we conduct experiments on 10's of thousands of engineers to understand how multi-line suggestions impact the user experience and contrast this with single-line suggestions. Our experiments reveal that (i) multi-line suggestions account for 42% of total characters accepted (despite only accounting for 16% for displayed suggestions) (ii) multi-line suggestions almost doubled the percentage of keystrokes saved for users from 9% to 17%. Multi-line CodeCompose has been rolled out to all engineers at Meta, and less than 1% of engineers have opted out of multi-line suggestions.

Tree-of-Code: A Tree-Structured Exploring Framework for End-to-End Code Generation and Execution in Complex Task Handling

Solving complex reasoning tasks is a key real-world application of agents. Thanks to the pretraining of Large Language Models (LLMs) on code data, recent approaches like CodeAct successfully use code as LLM agents' action, achieving good results. However, CodeAct greedily generates the next action's code block by relying on fragmented thoughts, resulting in inconsistency and instability. Moreover, CodeAct lacks action-related ground-truth (GT), making its supervision signals and termination conditions questionable in multi-turn interactions. To address these issues, we first introduce a simple yet effective end-to-end code generation paradigm, CodeProgram, which leverages code's systematic logic to align with global reasoning and enable cohesive problem-solving. Then, we propose Tree-of-Code (ToC), which self-grows CodeProgram nodes based on the executable nature of the code and enables self-supervision in a GT-free scenario. Experimental results on two datasets using ten popular zero-shot LLMs show ToC remarkably boosts accuracy by nearly 20% over CodeAct with less than 1/4 turns. Several LLMs even perform better on one-turn CodeProgram than on multi-turn CodeAct. To further investigate the trade-off between efficacy and efficiency, we test different ToC tree sizes and exploration mechanisms. We also highlight the potential of ToC's end-to-end data generation for supervised and reinforced fine-tuning.

Large Language Models Are State-of-the-Art Evaluators of Code Generation

Recent advancements in the field of natural language generation have facilitated the use of large language models to assess the quality of generated text. Although these models have shown promising results in tasks such as machine translation and summarization, their applicability in code generation tasks remains limited without human involvement. The complexity of programming concepts required for such tasks makes it difficult to develop evaluation metrics that align with human judgment. Token-matching-based metrics, such as BLEU, have demonstrated weak correlations with human practitioners in code generation tasks. Moreover, the utilization of human-written test suites to evaluate functional correctness can be challenging in domains with low resources. To overcome these obstacles, we propose a new evaluation framework based on the GPT-3.5 (GPT-3.5-turbo), for code generation assessments. Our framework addresses the limitations of existing approaches by achieving superior correlations with functional correctness and human preferences, without the need for test oracles or references. We evaluate the efficacy of our framework on two different tasks and four programming languages, comparing its performance with the state-of-the-art CodeBERTScore metric, which relies on a pre-trained model. Our results demonstrate that our framework surpasses CodeBERTScore, delivering high levels of accuracy and consistency across various programming languages and tasks. We also make our evaluation framework and datasets available to the public at https://github.com/terryyz/llm-code-eval, encouraging further research in the evaluation of code generation.

CodeT: Code Generation with Generated Tests

The task of generating code solutions for a given programming problem can benefit from the use of pre-trained language models such as Codex, which can produce multiple diverse samples. However, a major challenge for this task is to select the most appropriate solution from the multiple samples generated by the pre-trained language models. A natural way to evaluate the quality and correctness of a code solution is to run it against a set of test cases, but the manual creation of such test cases is often costly and time-consuming. In this paper, we propose a novel method, CodeT, that leverages the same pre-trained language models to automatically generate test cases for the code samples, thus reducing the human effort and increasing the coverage of the test scenarios. CodeT then executes the code samples using the generated test cases, and performs a dual execution agreement, which considers both the consistency of the outputs against the generated test cases and the agreement of the outputs with other code samples. We conduct comprehensive experiments on four benchmarks, HumanEval, MBPP, APPS and CodeContests, using five different pre-trained language models with varying sizes and capabilities. Our results show that CodeT can significantly improve the performance of code solution selection over previous methods, achieving remarkable and consistent gains across different models and benchmarks. For instance, CodeT improves the pass@1 metric on HumanEval to 65.8%, which represents an absolute improvement of 18.8% over the code-davinci-002 model, and an absolute improvement of more than 20% over the previous state-of-the-art results.

CodeCoT and Beyond: Learning to Program and Test like a Developer

In natural language processing, transformer-based large language models (LLMs) like GPT-x models developed by OpenAI have revolutionized the landscape. Despite their impressive capabilities, these models often encounter challenges when handling tasks that differ from their training data, resulting in compromised performance. To address this, few-shot learning has emerged as a valuable technique, allowing LLMs to adapt with minimal task-specific data. One innovative strategy, known as Chain-of-Thought Prompting (CoT), has been introduced to guide LLMs in revealing cognitive processes during multi-step reasoning. In this paper, we propose Code Chain-of-Thought~(CodeCoT), which consists of two components: the Vanilla CodeCoT and the Self-exam CodeCoT. The latter incorporates self-examination, empowering the model to iteratively generate code, formulate test cases, and refine its outputs. Specifically, the process entails the generation of test examples by the model corresponding to the code it is tasked to implement. If it fails on the test examples, then it regenerates the code based on the erroneous code and associated error types. Through comprehensive experiments, we observed that both techniques significantly enhance code generation accuracy across various LLM variants. Our evaluation results reveal that CodeCoT improves the code generation effectiveness, including an unprecedented pass@1 accuracy of 79.27\% using the Self-exam CodeCoT approach on the gpt-3.5-turbo-0613 model in the HumanEval dataset.

CodeACT: Code Adaptive Compute-efficient Tuning Framework for Code LLMs

Large language models (LLMs) have shown great potential in code-related tasks, yet open-source models lag behind their closed-source counterparts. To bridge this performance gap, existing methods generate vast amounts of synthetic data for fine-tuning, leading to inefficiencies in training. Motivated by the need for more effective and efficient training, we propose the Code Adaptive Compute-efficient Tuning (CodeACT) framework. CodeACT introduces the Complexity and Diversity Aware Sampling (CDAS) method to select high-quality training data based on complexity and diversity, and the Dynamic Pack padding strategy to reduce computational resource usage by minimizing padding tokens during training. Experimental results demonstrate that CodeACT-DeepSeek-Coder-6.7B, fine-tuned on only 40% of the EVOL-Instruct data, achieves an 8.6% performance increase on HumanEval, reduces training time by 78%, and decreases peak GPU memory usage by 27%. These findings underscore CodeACT's ability to enhance the performance and efficiency of open-source models. By optimizing both the data selection and training processes, CodeACT offers a comprehensive approach to improving the capabilities of open-source LLMs while significantly reducing computational requirements, addressing the dual challenges of data quality and training efficiency, and paving the way for more resource-efficient and performant models.

CodeTree: Agent-guided Tree Search for Code Generation with Large Language Models

Pre-trained on massive amounts of code and text data, large language models (LLMs) have demonstrated remarkable achievements in performing code generation tasks. With additional execution-based feedback, these models can act as agents with capabilities to self-refine and improve generated code autonomously. However, on challenging coding tasks with extremely large search space, current agentic approaches still struggle with multi-stage planning, generating, and debugging. To address this problem, we propose CodeTree, a framework for LLM agents to efficiently explore the search space in different stages of the code generation process. Specifically, we adopted a unified tree structure to explicitly explore different coding strategies, generate corresponding coding solutions, and subsequently refine the solutions. In each stage, critical decision-making (ranking, termination, expanding) of the exploration process is guided by both the environmental execution-based feedback and LLM-agent-generated feedback. We comprehensively evaluated CodeTree on 7 code generation benchmarks and demonstrated the significant performance gains of CodeTree against strong baselines. Using GPT-4o as the base model, we consistently achieved top results of 95.1 on HumanEval, 98.7 on MBPP, and 43.0 on CodeContests. On the challenging SWEBench benchmark, our approach led to significant performance gains.

CodeRosetta: Pushing the Boundaries of Unsupervised Code Translation for Parallel Programming

Recent advancements in Large Language Models (LLMs) have renewed interest in automatic programming language translation. Encoder-decoder transformer models, in particular, have shown promise in translating between different programming languages. However, translating between a language and its high-performance computing (HPC) extensions remains underexplored due to challenges such as complex parallel semantics. In this paper, we introduce CodeRosetta, an encoder-decoder transformer model designed specifically for translating between programming languages and their HPC extensions. CodeRosetta is evaluated on C++ to CUDA and Fortran to C++ translation tasks. It uses a customized learning framework with tailored pretraining and training objectives to effectively capture both code semantics and parallel structural nuances, enabling bidirectional translation. Our results show that CodeRosetta outperforms state-of-the-art baselines in C++ to CUDA translation by 2.9 BLEU and 1.72 CodeBLEU points while improving compilation accuracy by 6.05%. Compared to general closed-source LLMs, our method improves C++ to CUDA translation by 22.08 BLEU and 14.39 CodeBLEU, with 2.75% higher compilation accuracy. Finally, CodeRosetta exhibits proficiency in Fortran to parallel C++ translation, marking it, to our knowledge, as the first encoder-decoder model for this complex task, improving CodeBLEU by at least 4.63 points compared to closed-source and open-code LLMs.

Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning

Despite the remarkable success of large language models (LLMs) on traditional natural language processing tasks, their planning ability remains a critical bottleneck in tackling complex multi-step reasoning tasks. Existing approaches mainly rely on prompting or task-specific fine-tuning, often suffering from poor robustness and cross-task generalization. To address the limitation, we introduce CodePlan, a scalable framework that empowers LLMs to generate and follow code-form plans -- pseudocode that outlines high-level, structured reasoning processes. By leveraging the structured and versatile nature of code, CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks. Importantly, CodePlan allows automatic extraction of code-form plans from massive, wide-ranging text corpora without the need for curated, task-specific datasets. This enables it to scale up efficiently and improve LLM's reasoning capabilities across diverse scenarios. To train CodePlan, we construct a large-scale dataset of 2M examples that integrate code-form plans with standard prompt-response pairs from existing corpora. With minimal computation overhead during both training and inference, CodePlan achieves a 25.1\% relative improvement compared with directly generating responses, averaged across 13 challenging multi-step reasoning benchmarks, spanning mathematical reasoning, symbolic reasoning, instruction-following, multi-hop QA, and decision-making tasks. Further analysis reveals CodePlan's increasing performance gains on more complex reasoning tasks, as well as significant data efficiency thanks to its generalization ability.

Pop Quiz! Do Pre-trained Code Models Possess Knowledge of Correct API Names?

Recent breakthroughs in pre-trained code models, such as CodeBERT and Codex, have shown their superior performance in various downstream tasks. The correctness and unambiguity of API usage among these code models are crucial for achieving desirable program functionalities, requiring them to learn various API fully qualified names structurally and semantically. Recent studies reveal that even state-of-the-art pre-trained code models struggle with suggesting the correct APIs during code generation. However, the reasons for such poor API usage performance are barely investigated. To address this challenge, we propose using knowledge probing as a means of interpreting code models, which uses cloze-style tests to measure the knowledge stored in models. Our comprehensive study examines a code model's capability of understanding API fully qualified names from two different perspectives: API call and API import. Specifically, we reveal that current code models struggle with understanding API names, with pre-training strategies significantly affecting the quality of API name learning. We demonstrate that natural language context can assist code models in locating Python API names and generalize Python API name knowledge to unseen data. Our findings provide insights into the limitations and capabilities of current pre-trained code models, and suggest that incorporating API structure into the pre-training process can improve automated API usage and code representations. This work provides significance for advancing code intelligence practices and direction for future studies. All experiment results, data and source code used in this work are available at https://doi.org/10.5281/zenodo.7902072.

Split, Encode and Aggregate for Long Code Search

Code search with natural language plays a crucial role in reusing existing code snippets and accelerating software development. Thanks to the Transformer-based pretraining models, the performance of code search has been improved significantly compared to traditional information retrieval (IR) based models. However, due to the quadratic complexity of multi-head self-attention, there is a limit on the input token length. For efficient training on standard GPUs like V100, existing pretrained code models, including GraphCodeBERT, CodeBERT, RoBERTa (code), take the first 256 tokens by default, which makes them unable to represent the complete information of long code that is greater than 256 tokens. Unlike long text paragraph that can be regarded as a whole with complete semantics, the semantics of long code is discontinuous as a piece of long code may contain different code modules. Therefore, it is unreasonable to directly apply the long text processing methods to long code. To tackle the long code problem, we propose SEA (Split, Encode and Aggregate for Long Code Search), which splits long code into code blocks, encodes these blocks into embeddings, and aggregates them to obtain a comprehensive long code representation. With SEA, we could directly use Transformer-based pretraining models to model long code without changing their internal structure and repretraining. Leveraging abstract syntax tree (AST) based splitting and attention-based aggregation methods, SEA achieves significant improvements in long code search performance. We also compare SEA with two sparse Trasnformer methods. With GraphCodeBERT as the encoder, SEA achieves an overall mean reciprocal ranking score of 0.785, which is 10.1% higher than GraphCodeBERT on the CodeSearchNet benchmark.

CrossCodeEval: A Diverse and Multilingual Benchmark for Cross-File Code Completion

Code completion models have made significant progress in recent years, yet current popular evaluation datasets, such as HumanEval and MBPP, predominantly focus on code completion tasks within a single file. This over-simplified setting falls short of representing the real-world software development scenario where repositories span multiple files with numerous cross-file dependencies, and accessing and understanding cross-file context is often required to complete the code correctly. To fill in this gap, we propose CrossCodeEval, a diverse and multilingual code completion benchmark that necessitates an in-depth cross-file contextual understanding to complete the code accurately. CrossCodeEval is built on a diverse set of real-world, open-sourced, permissively-licensed repositories in four popular programming languages: Python, Java, TypeScript, and C#. To create examples that strictly require cross-file context for accurate completion, we propose a straightforward yet efficient static-analysis-based approach to pinpoint the use of cross-file context within the current file. Extensive experiments on state-of-the-art code language models like CodeGen and StarCoder demonstrate that CrossCodeEval is extremely challenging when the relevant cross-file context is absent, and we see clear improvements when adding these context into the prompt. However, despite such improvements, the pinnacle of performance remains notably unattained even with the highest-performing model, indicating that CrossCodeEval is also capable of assessing model's capability in leveraging extensive context to make better code completion. Finally, we benchmarked various methods in retrieving cross-file context, and show that CrossCodeEval can also be used to measure the capability of code retrievers.

Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective

Code generation aims to understand the problem description and generate corresponding code snippets, where existing works generally decompose such complex tasks into intermediate steps by prompting strategies, such as Chain-of-Thought and its variants. While these studies have achieved some success, their effectiveness is highly dependent on the capabilities of advanced Large Language Models (LLMs) such as GPT-4, particularly in terms of API calls, which significantly limits their practical applicability. Consequently, how to enhance the code generation capabilities of small and medium-scale code LLMs without significantly increasing training costs is an appealing challenge. In this paper, we suggest that code comments are the natural logic pivot between natural language and code language and propose using comments to boost the code generation ability of code LLMs. Concretely, we propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy. Experiments are performed on HumanEval and MBPP, utilizing StarCoder and WizardCoder as backbone models, and encompassing model parameter sizes between 3B and 7B. The results indicate that MANGO significantly improves the code pass rate based on the strong baselines. Meanwhile, the robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting. The code is publicly available at https://github.com/pppa2019/Mango.

Zero-Shot Code Representation Learning via Prompt Tuning

Learning code representations has been the core prerequisite of many software engineering tasks such as code clone detection and code generation. State-of-the-art program representation techniques mainly utilize pre-trained language models (PLMs) such as CodeBERT. A Transformer encoder is firstly pre-trained on a large-scale code corpus to acquire general knowledge about source code. The pre-trained model is then fine-tuned on specific tasks using an amount of labeled data. However, gathering training samples for the downstream tasks can be prohibitively expensive and impractical for domain-specific languages or project-specific tasks. Besides, pre-training and downstream tasks are usually heterogeneous, which makes it difficult to fully explore the knowledge learned during pre-training. In this paper, we propose Zecoler, a zero-shot approach for learning code representations. Zecoler is built upon a pre-trained programming language model. In order to elicit knowledge from the PLMs efficiently, Zecoler casts the downstream tasks to the same form of pre-training objectives by inserting train-able prompts into the original input. These prompts can guide PLMs on how to generate better results. Subsequently, we employ the prompt tuning technique to search for the optimal prompts for PLMs automatically. This enables the representation model to efficiently fit the downstream tasks through fine-tuning on the dataset in source language domain and then reuse the pre-trained knowledge for the target domain in a zero-shot style. We evaluate Zecoler in five code intelligence tasks including code clone detection, code search, method name prediction, code summarization, and code generation. The results show that our approach significantly outperforms baseline models under the zero-shot setting.

CodeScore: Evaluating Code Generation by Learning Code Execution

A proper code evaluation metric (CEM) profoundly impacts the evolution of code generation, which is an important research field in NLP and software engineering. Prevailing match-based CEMs (e.g., BLEU, Accuracy, and CodeBLEU) suffer from two significant drawbacks. 1. They primarily measure the surface differences between codes without considering their functional equivalence. However, functional equivalence is pivotal in evaluating the effectiveness of code generation, as different codes can perform identical operations. 2. They are predominantly designed for the Ref-only input format. However, code evaluation necessitates versatility in input formats. Aside from Ref-only, there are NL-only and Ref\&NL formats, which existing match-based CEMs cannot effectively accommodate. In this paper, we propose CodeScore, a large language model (LLM)-based CEM, which estimates the functional correctness of generated code on three input types. To acquire CodeScore, we present UniCE, a unified code generation learning framework, for LLMs to learn code execution (i.e., learning PassRatio and Executability of generated code) with unified input. Extensive experimental results on multiple code evaluation datasets demonstrate that CodeScore absolutely improves up to 58.87% correlation with functional correctness compared to other CEMs, achieves state-of-the-art performance, and effectively handles three input formats.

CodexGraph: Bridging Large Language Models and Code Repositories via Code Graph Databases

Large Language Models (LLMs) excel in stand-alone code tasks like HumanEval and MBPP, but struggle with handling entire code repositories. This challenge has prompted research on enhancing LLM-codebase interaction at a repository scale. Current solutions rely on similarity-based retrieval or manual tools and APIs, each with notable drawbacks. Similarity-based retrieval often has low recall in complex tasks, while manual tools and APIs are typically task-specific and require expert knowledge, reducing their generalizability across diverse code tasks and real-world applications. To mitigate these limitations, we introduce \framework, a system that integrates LLM agents with graph database interfaces extracted from code repositories. By leveraging the structural properties of graph databases and the flexibility of the graph query language, \framework enables the LLM agent to construct and execute queries, allowing for precise, code structure-aware context retrieval and code navigation. We assess \framework using three benchmarks: CrossCodeEval, SWE-bench, and EvoCodeBench. Additionally, we develop five real-world coding applications. With a unified graph database schema, \framework demonstrates competitive performance and potential in both academic and real-world environments, showcasing its versatility and efficacy in software engineering. Our application demo: https://github.com/modelscope/modelscope-agent/tree/master/apps/codexgraph_agent.

AceCoder: Utilizing Existing Code to Enhance Code Generation

Large Language Models (LLMs) have shown great success in code generation. LLMs take as the input a prompt and output the code. A key question is how to make prompts (i.e., Prompting Techniques). Existing prompting techniques are designed for natural language generation and have low accuracy in code generation. In this paper, we propose a new prompting technique named AceCoder. Our motivation is that code generation meets two unique challenges (i.e., requirement understanding and code implementation). AceCoder contains two novel mechanisms (i.e., guided code generation and example retrieval) to solve these challenges. (1) Guided code generation asks LLMs first to analyze requirements and output an intermediate preliminary (e.g., test cases). The preliminary is used to clarify requirements and tell LLMs "what to write". (2) Example retrieval selects similar programs as examples in prompts, which provide lots of relevant content (e.g., algorithms, APIs) and teach LLMs "how to write". We apply AceCoder to three LLMs (e.g., Codex) and evaluate it on three public benchmarks using the Pass@k. Results show that AceCoder can significantly improve the performance of LLMs on code generation. (1) In terms of Pass@1, AceCoder outperforms the state-of-the-art baseline by up to 56.4% in MBPP, 70.7% in MBJP, and 88.4% in MBJSP. (2) AceCoder is effective in LLMs with different sizes (i.e., 6B to 13B) and different languages (i.e., Python, Java, and JavaScript). (3) Human evaluation shows human developers prefer programs from AceCoder.

Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion?

Code completion, a key downstream task in code generation, is one of the most frequent and impactful methods for enhancing developer productivity in software development. As intelligent completion tools evolve, we need a robust evaluation benchmark that enables meaningful comparisons between products and guides future advancements. However, existing benchmarks focus more on coarse-grained tasks without industrial analysis resembling general code generation rather than the real-world scenarios developers encounter. Moreover, these benchmarks often rely on costly and time-consuming human annotation, and the standalone test cases fail to leverage minimal tests for maximum repository-level understanding and code coverage. To address these limitations, we first analyze business data from an industrial code completion tool and redefine the evaluation criteria to better align with the developer's intent and desired completion behavior throughout the coding process. Based on these insights, we introduce Codev-Agent, an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage, ensuring fair and effective comparisons. Using Codev-Agent, we present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework. Codev-Bench assesses whether a code completion tool can capture a developer's immediate intent and suggest appropriate code across diverse contexts, providing a more realistic benchmark for code completion in modern software development.

CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model

Code Large Language Models (Code LLMs) have gained significant attention in the industry due to their wide applications in the full lifecycle of software engineering. However, the effectiveness of existing models in understanding non-English inputs for multi-lingual code-related tasks is still far from well studied. This paper introduces CodeFuse-13B, an open-sourced pre-trained code LLM. It is specifically designed for code-related tasks with both English and Chinese prompts and supports over 40 programming languages. CodeFuse achieves its effectiveness by utilizing a high quality pre-training dataset that is carefully filtered by program analyzers and optimized during the training process. Extensive experiments are conducted using real-world usage scenarios, the industry-standard benchmark HumanEval-x, and the specially designed CodeFuseEval for Chinese prompts. To assess the effectiveness of CodeFuse, we actively collected valuable human feedback from the AntGroup's software development process where CodeFuse has been successfully deployed. The results demonstrate that CodeFuse-13B achieves a HumanEval pass@1 score of 37.10%, positioning it as one of the top multi-lingual code LLMs with similar parameter sizes. In practical scenarios, such as code generation, code translation, code comments, and testcase generation, CodeFuse performs better than other models when confronted with Chinese prompts.

Extending Source Code Pre-Trained Language Models to Summarise Decompiled Binaries

Reverse engineering binaries is required to understand and analyse programs for which the source code is unavailable. Decompilers can transform the largely unreadable binaries into a more readable source code-like representation. However, reverse engineering is time-consuming, much of which is taken up by labelling the functions with semantic information. While the automated summarisation of decompiled code can help Reverse Engineers understand and analyse binaries, current work mainly focuses on summarising source code, and no suitable dataset exists for this task. In this work, we extend large pre-trained language models of source code to summarise decompiled binary functions. Furthermore, we investigate the impact of input and data properties on the performance of such models. Our approach consists of two main components; the data and the model. We first build CAPYBARA, a dataset of 214K decompiled function-documentation pairs across various compiler optimisations. We extend CAPYBARA further by generating synthetic datasets and deduplicating the data. Next, we fine-tune the CodeT5 base model with CAPYBARA to create BinT5. BinT5 achieves the state-of-the-art BLEU-4 score of 60.83, 58.82, and 44.21 for summarising source, decompiled, and synthetically stripped decompiled code, respectively. This indicates that these models can be extended to decompiled binaries successfully. Finally, we found that the performance of BinT5 is not heavily dependent on the dataset size and compiler optimisation level. We recommend future research to further investigate transferring knowledge when working with less expressive input formats such as stripped binaries.

CursorCore: Assist Programming through Aligning Anything

Large language models have been successfully applied to programming assistance tasks, such as code completion, code insertion, and instructional code editing. However, these applications remain insufficiently automated and struggle to effectively integrate various types of information during the programming process, including coding history, current code, and user instructions. In this work, we propose a new conversational framework that comprehensively integrates these information sources, collect data to train our models and evaluate their performance. Firstly, to thoroughly evaluate how well models align with different types of information and the quality of their outputs, we introduce a new benchmark, APEval (Assist Programming Eval), to comprehensively assess the performance of models in programming assistance tasks. Then, for data collection, we develop a data generation pipeline, Programming-Instruct, which synthesizes training data from diverse sources, such as GitHub and online judge platforms. This pipeline can automatically generate various types of messages throughout the programming process. Finally, using this pipeline, we generate 219K samples, fine-tune multiple models, and develop the CursorCore series. We show that CursorCore outperforms other models of comparable size. This framework unifies applications such as inline chat and automated editing, contributes to the advancement of coding assistants. Code, models and data are freely available at https://github.com/TechxGenus/CursorCore.

CodeElo: Benchmarking Competition-level Code Generation of LLMs with Human-comparable Elo Ratings

With the increasing code reasoning capabilities of existing large language models (LLMs) and breakthroughs in reasoning models like OpenAI o1 and o3, there is a growing need to develop more challenging and comprehensive benchmarks that effectively test their sophisticated competition-level coding abilities. Existing benchmarks, like LiveCodeBench and USACO, fall short due to the unavailability of private test cases, lack of support for special judges, and misaligned execution environments. To bridge this gap, we introduce CodeElo, a standardized competition-level code generation benchmark that effectively addresses all these challenges for the first time. CodeElo benchmark is mainly based on the official CodeForces platform and tries to align with the platform as much as possible. We compile the recent six months of contest problems on CodeForces with detailed information such as contest divisions, problem difficulty ratings, and problem algorithm tags. We introduce a unique judging method in which problems are submitted directly to the platform and develop a reliable Elo rating calculation system that aligns with the platform and is comparable with human participants but has lower variance. By testing on our CodeElo, we provide the Elo ratings of 30 existing popular open-source and 3 proprietary LLMs for the first time. The results show that o1-mini and QwQ-32B-Preview stand out significantly, achieving Elo ratings of 1578 and 1261, respectively, while other models struggle even with the easiest problems, placing in the lowest 20 percent among all human participants. Detailed analysis experiments are also conducted to provide insights into performance across algorithms and comparisons between using C++ and Python, which can suggest directions for future studies.

CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules

Large Language Models (LLMs) have already become quite proficient at solving simpler programming tasks like those in HumanEval or MBPP benchmarks. However, solving more complex and competitive programming tasks is still quite challenging for these models - possibly due to their tendency to generate solutions as monolithic code blocks instead of decomposing them into logical sub-tasks and sub-modules. On the other hand, experienced programmers instinctively write modularized code with abstraction for solving complex tasks, often reusing previously developed modules. To address this gap, we propose CodeChain, a novel framework for inference that elicits modularized code generation through a chain of self-revisions, each being guided by some representative sub-modules generated in previous iterations. Concretely, CodeChain first instructs the LLM to generate modularized codes through chain-of-thought prompting. Then it applies a chain of self-revisions by iterating the two steps: 1) extracting and clustering the generated sub-modules and selecting the cluster representatives as the more generic and re-usable implementations, and 2) augmenting the original chain-of-thought prompt with these selected module-implementations and instructing the LLM to re-generate new modularized solutions. We find that by naturally encouraging the LLM to reuse the previously developed and verified sub-modules, CodeChain can significantly boost both modularity as well as correctness of the generated solutions, achieving relative pass@1 improvements of 35% on APPS and 76% on CodeContests. It is shown to be effective on both OpenAI LLMs as well as open-sourced LLMs like WizardCoder. We also conduct comprehensive ablation studies with different methods of prompting, number of clusters, model sizes, program qualities, etc., to provide useful insights that underpin CodeChain's success.

CodeMonkeys: Scaling Test-Time Compute for Software Engineering

Scaling test-time compute is a promising axis for improving LLM capabilities. However, test-time compute can be scaled in a variety of ways, and effectively combining different approaches remains an active area of research. Here, we explore this problem in the context of solving real-world GitHub issues from the SWE-bench dataset. Our system, named CodeMonkeys, allows models to iteratively edit a codebase by jointly generating and running a testing script alongside their draft edit. We sample many of these multi-turn trajectories for every issue to generate a collection of candidate edits. This approach lets us scale "serial" test-time compute by increasing the number of iterations per trajectory and "parallel" test-time compute by increasing the number of trajectories per problem. With parallel scaling, we can amortize up-front costs across multiple downstream samples, allowing us to identify relevant codebase context using the simple method of letting an LLM read every file. In order to select between candidate edits, we combine voting using model-generated tests with a final multi-turn trajectory dedicated to selection. Overall, CodeMonkeys resolves 57.4% of issues from SWE-bench Verified using a budget of approximately 2300 USD. Our selection method can also be used to combine candidates from different sources. Selecting over an ensemble of edits from existing top SWE-bench Verified submissions obtains a score of 66.2% and outperforms the best member of the ensemble on its own. We fully release our code and data at https://scalingintelligence.stanford.edu/pubs/codemonkeys.

XMainframe: A Large Language Model for Mainframe Modernization

Mainframe operating systems, despite their inception in the 1940s, continue to support critical sectors like finance and government. However, these systems are often viewed as outdated, requiring extensive maintenance and modernization. Addressing this challenge necessitates innovative tools that can understand and interact with legacy codebases. To this end, we introduce XMainframe, a state-of-the-art large language model (LLM) specifically designed with knowledge of mainframe legacy systems and COBOL codebases. Our solution involves the creation of an extensive data collection pipeline to produce high-quality training datasets, enhancing XMainframe's performance in this specialized domain. Additionally, we present MainframeBench, a comprehensive benchmark for assessing mainframe knowledge, including multiple-choice questions, question answering, and COBOL code summarization. Our empirical evaluations demonstrate that XMainframe consistently outperforms existing state-of-the-art LLMs across these tasks. Specifically, XMainframe achieves 30% higher accuracy than DeepSeek-Coder on multiple-choice questions, doubles the BLEU score of Mixtral-Instruct 8x7B on question answering, and scores six times higher than GPT-3.5 on COBOL summarization. Our work highlights the potential of XMainframe to drive significant advancements in managing and modernizing legacy systems, thereby enhancing productivity and saving time for software developers.

StarCoder 2 and The Stack v2: The Next Generation

The BigCode project, an open-scientific collaboration focused on the responsible development of Large Language Models for Code (Code LLMs), introduces StarCoder2. In partnership with Software Heritage (SWH), we build The Stack v2 on top of the digital commons of their source code archive. Alongside the SWH repositories spanning 619 programming languages, we carefully select other high-quality data sources, such as GitHub pull requests, Kaggle notebooks, and code documentation. This results in a training set that is 4x larger than the first StarCoder dataset. We train StarCoder2 models with 3B, 7B, and 15B parameters on 3.3 to 4.3 trillion tokens and thoroughly evaluate them on a comprehensive set of Code LLM benchmarks. We find that our small model, StarCoder2-3B, outperforms other Code LLMs of similar size on most benchmarks, and also outperforms StarCoderBase-15B. Our large model, StarCoder2- 15B, significantly outperforms other models of comparable size. In addition, it matches or outperforms CodeLlama-34B, a model more than twice its size. Although DeepSeekCoder- 33B is the best-performing model at code completion for high-resource languages, we find that StarCoder2-15B outperforms it on math and code reasoning benchmarks, as well as several low-resource languages. We make the model weights available under an OpenRAIL license and ensure full transparency regarding the training data by releasing the SoftWare Heritage persistent IDentifiers (SWHIDs) of the source code data.

When to Show a Suggestion? Integrating Human Feedback in AI-Assisted Programming

AI powered code-recommendation systems, such as Copilot and CodeWhisperer, provide code suggestions inside a programmer's environment (e.g., an IDE) with the aim to improve their productivity. Since, in these scenarios, programmers accept and reject suggestions, ideally, such a system should use this feedback in furtherance of this goal. In this work, we leverage prior data of programmers interacting with GitHub Copilot, a system used by millions of programmers, to develop interventions that can save programmer time. We propose a utility theory framework, which models this interaction with programmers and decides which suggestions to display. Our framework Conditional suggestion Display from Human Feedback (CDHF), relies on a cascade of models that predict suggestion acceptance to selectively hide suggestions reducing both latency and programmer verification time. Using data from 535 programmers, we perform a retrospective evaluation of CDHF and show that we can avoid displaying a significant fraction of suggestions that would have been rejected doing so without total knowledge of the suggestions themselves. We further demonstrate the importance of incorporating the programmer's latent unobserved state in deciding when to display suggestions through ablations on user study data. Finally, we showcase that using suggestion acceptance as a reward signal to know which suggestions to display leads to reduced quality suggestions indicating an unexpected pitfall.

Copilot Refinement: Addressing Code Smells in Copilot-Generated Python Code

As one of the most popular dynamic languages, Python experiences a decrease in readability and maintainability when code smells are present. Recent advancements in Large Language Models have sparked growing interest in AI-enabled tools for both code generation and refactoring. GitHub Copilot is one such tool that has gained widespread usage. Copilot Chat, released on September 2023, functions as an interactive tool aims at facilitating natural language-powered coding. However, limited attention has been given to understanding code smells in Copilot-generated Python code and Copilot's ability to fix the code smells it generates. To this end, we built a dataset comprising 102 code smells in Copilot-generated Python code. Our aim is to first explore the occurrence of code smells in Copilot-generated Python code and then evaluate the effectiveness of Copilot in fixing these code smells employing different prompts. The results show that 8 out of 10 types of Python smells can be detected in Copilot-generated Python code, among which Multiply-Nested Container is the most common one. For these code smells, Copilot Chat achieves a highest fixing rate of 87.1%, showing promise in fixing Python code smells generated by Copilot itself. Besides, the effectiveness of Copilot Chat in fixing these smells can be improved with the provision of more detailed prompts. However, using Copilot Chat to fix these smells might introduce new code smells.

CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of Coding Tasks

Over the last several decades, software has been woven into the fabric of every aspect of our society. As software development surges and code infrastructure of enterprise applications ages, it is now more critical than ever to increase software development productivity and modernize legacy applications. Advances in deep learning and machine learning algorithms have enabled numerous breakthroughs, motivating researchers to leverage AI techniques to improve software development efficiency. Thus, the fast-emerging research area of AI for Code has garnered new interest and gathered momentum. In this paper, we present a large-scale dataset CodeNet, consisting of over 14 million code samples and about 500 million lines of code in 55 different programming languages, which is aimed at teaching AI to code. In addition to its large scale, CodeNet has a rich set of high-quality annotations to benchmark and help accelerate research in AI techniques for a variety of critical coding tasks, including code similarity and classification, code translation between a large variety of programming languages, and code performance (runtime and memory) improvement techniques. Additionally, CodeNet provides sample input and output test sets for 98.5% of the code samples, which can be used as an oracle for determining code correctness and potentially guide reinforcement learning for code quality improvements. As a usability feature, we provide several pre-processing tools in CodeNet to transform source code into representations that can be readily used as inputs into machine learning models. Results of code classification and code similarity experiments using the CodeNet dataset are provided as a reference. We hope that the scale, diversity and rich, high-quality annotations of CodeNet will offer unprecedented research opportunities at the intersection of AI and Software Engineering.

CodeDPO: Aligning Code Models with Self Generated and Verified Source Code

Code generation models have shown significant potential for programming tasks. However, existing training methods like supervised fine-tuning face key limitations: they do not effectively teach models to prioritize correct over incorrect solutions in ambiguous situations, nor do they effectively optimize the runtime efficiency of the generated code. To address these challenges, we propose CodeDPO, a framework that integrates preference learning into code generation to improve two key code preference factors: code correctness and efficiency. CodeDPO employs a novel dataset construction method, utilizing a self-generation-and-validation mechanism that simultaneously generates and evaluates code and test cases. The underlying assumption is that test cases executable by multiple code snippets provide more reliable validation, and code that passes more tests is more likely to be correct. Through this self-validation process, our PageRank-inspired algorithm iteratively updates the ranking score of each code snippet, ultimately creating a code preference optimization dataset based on correctness and efficiency. CodeDPO is flexible and scalable, generating diverse preference optimization data without depending on external resources. Through comprehensive evaluations of five widely used benchmarks, CodeDPO demonstrates significant improvements in correctness and efficiency compared to existing methods. Our experiments prove that CodeDPO enhances the capabilities of LLMs in code generation and provides a robust foundation for conducting code preference optimization in more complex and challenging real-world scenarios.

CodeMind: A Framework to Challenge Large Language Models for Code Reasoning

Solely relying on test passing to evaluate Large Language Models (LLMs) for code synthesis may result in unfair assessment or promoting models with data leakage. As an alternative, we introduce CodeMind, a framework designed to gauge the code reasoning abilities of LLMs. CodeMind currently supports three code reasoning tasks: Independent Execution Reasoning (IER), Dependent Execution Reasoning (DER), and Specification Reasoning (SR). The first two evaluate models to predict the execution output of an arbitrary code or code the model could correctly synthesize. The third one evaluates the extent to which LLMs implement the specified expected behavior. Our extensive evaluation of nine LLMs across five benchmarks in two different programming languages using CodeMind shows that LLMs fairly follow control flow constructs and, in general, explain how inputs evolve to output, specifically for simple programs and the ones they can correctly synthesize. However, their performance drops for code with higher complexity, non-trivial logical and arithmetic operators, non-primitive types, and API calls. Furthermore, we observe that, while correlated, specification reasoning (essential for code synthesis) does not imply execution reasoning (essential for broader programming tasks such as testing and debugging): ranking LLMs based on test passing can be different compared to code reasoning.

NaturalCodeBench: Examining Coding Performance Mismatch on HumanEval and Natural User Prompts

Large language models (LLMs) have manifested strong ability to generate codes for productive activities. However, current benchmarks for code synthesis, such as HumanEval, MBPP, and DS-1000, are predominantly oriented towards introductory tasks on algorithm and data science, insufficiently satisfying challenging requirements prevalent in real-world coding. To fill this gap, we propose NaturalCodeBench (NCB), a challenging code benchmark designed to mirror the complexity and variety of scenarios in real coding tasks. NCB comprises 402 high-quality problems in Python and Java, meticulously selected from natural user queries from online coding services, covering 6 different domains. Noting the extraordinary difficulty in creating testing cases for real-world queries, we also introduce a semi-automated pipeline to enhance the efficiency of test case construction. Comparing with manual solutions, it achieves an efficiency increase of more than 4 times. Our systematic experiments on 39 LLMs find that performance gaps on NCB between models with close HumanEval scores could still be significant, indicating a lack of focus on practical code synthesis scenarios or over-specified optimization on HumanEval. On the other hand, even the best-performing GPT-4 is still far from satisfying on NCB. The evaluation toolkit and development set are available at https://github.com/THUDM/NaturalCodeBench.

USCD: Improving Code Generation of LLMs by Uncertainty-Aware Selective Contrastive Decoding

Large language models (LLMs) have shown remarkable capabilities in code generation. However, the effects of hallucinations (e.g., output noise) make it particularly challenging for LLMs to generate high-quality code in one pass. In this work, we propose a simple and effective uncertainty-aware selective contrastive decoding (USCD) mechanism to improve the quality of one-pass code generation in LLMs and reduce the impact of output noise. To be specific, we first elaborately designed a negative prompt (namely lame prompt) to output noise by removing input-output examples from the standard few-shot prompt. Our preliminary study shows that the Jensen-Shannon divergence (JS divergence) between token distribution uncertainty and the output noise is relatively low (approximately 0.25), indicating their high relevance. Then, we selectively eliminate output noise induced by lame prompts based on the uncertainty of the prediction distribution from the standard prompt. Notably, our proposed plug-and-play mechanism is an inference-only method, enjoying appealing flexibility. Extensive experiments on widely used benchmarks, e.g., HumanEval, MBPP, and MultiPL-E, upon several LLMs (i.e., Inocder-6b, CodeLlama-7b, WizardCoder-15b, StarCoder, and Llama2-7b), demonstrate that our proposed USCD significantly improves one-pass code generation, with an average pass@1 scores increase of 16.59\%. We will release code and data on GitHub.

An Empirical Study of Retrieval-Augmented Code Generation: Challenges and Opportunities

Code generation aims to automatically generate code snippets of specific programming language according to natural language descriptions. The continuous advancements in deep learning, particularly pre-trained models, have empowered the code generation task to achieve remarkable performance. One main challenge of pre-trained models for code generation is the semantic gap between natural language requirements and source code. To address the issue, prior studies typically adopt a retrieval-augmented framework for the task, where the similar code snippets collected by a retrieval process can be leveraged to help understand the requirements and provide guidance for the generation process. However, there is a lack of systematic study on the application of this framework for code generation, including the impact of the final generated results and the specific usage of the framework. In this paper, we choose three popular pre-trained code models, namely CodeGen, UniXcoder, and CodeT5, to assess the impact of the quality and utilization of retrieved code on the retrieval-augmented framework. Our analysis shows that the retrieval-augmented framework is beneficial for improving the performance of the existing pre-trained models. We also provide suggestions on the utilization of the retrieval-augmented code generation framework: BM25 and Sequential Integration Fusion are recommended due to their convenience and superior performance. Sketch Filling Fusion, which extracts a sketch of relevant code, could help the model improve its performance further. Additionally, we conduct experiments to investigate the influence of the retrieval-augmented framework on large language models for code generation, showing the effectiveness of the framework, and we discuss the trade-off between performance improvement and computational costs in each phase within the framework.

Advancing vision-language models in front-end development via data synthesis

Modern front-end (FE) development, especially when leveraging the unique features of frameworks like React and Vue, presents distinctive challenges. These include managing modular architectures, ensuring synchronization between data and visual outputs for declarative rendering, and adapting reusable components to various scenarios. Such complexities make it particularly difficult for state-of-the-art large vision-language models (VLMs) to generate accurate and functional code directly from design images. To address these challenges, we propose a reflective agentic workflow that synthesizes high-quality image-text data to capture the diverse characteristics of FE development. This workflow automates the extraction of self-containedA \textbf{self-contained code snippet is one that encapsulates all necessary logic, styling, and dependencies, ensuring it functions independently without requiring external imports or context.} code snippets from real-world projects, renders the corresponding visual outputs, and generates detailed descriptions that link design elements to functional code. To further expand the scope and utility of the synthesis, we introduce three data synthesis strategies: Evolution-based synthesis, which enables scalable and diverse dataset expansion; Waterfall-Model-based synthesis, which generates logically coherent code derived from system requirements; and Additive Development synthesis, which iteratively increases the complexity of human-authored components. We build a large vision-language model, Flame, trained on the synthesized datasets and demonstrate its effectiveness in generating React code via the pass@k metric. Our results suggest that a code VLM trained to interpret images before code generation may achieve better performance.

DNABERT-S: Learning Species-Aware DNA Embedding with Genome Foundation Models

Effective DNA embedding remains crucial in genomic analysis, particularly in scenarios lacking labeled data for model fine-tuning, despite the significant advancements in genome foundation models. A prime example is metagenomics binning, a critical process in microbiome research that aims to group DNA sequences by their species from a complex mixture of DNA sequences derived from potentially thousands of distinct, often uncharacterized species. To fill the lack of effective DNA embedding models, we introduce DNABERT-S, a genome foundation model that specializes in creating species-aware DNA embeddings. To encourage effective embeddings to error-prone long-read DNA sequences, we introduce Manifold Instance Mixup (MI-Mix), a contrastive objective that mixes the hidden representations of DNA sequences at randomly selected layers and trains the model to recognize and differentiate these mixed proportions at the output layer. We further enhance it with the proposed Curriculum Contrastive Learning (C^2LR) strategy. Empirical results on 18 diverse datasets showed DNABERT-S's remarkable performance. It outperforms the top baseline's performance in 10-shot species classification with just a 2-shot training while doubling the Adjusted Rand Index (ARI) in species clustering and substantially increasing the number of correctly identified species in metagenomics binning. The code, data, and pre-trained model are publicly available at https://github.com/Zhihan1996/DNABERT_S.

SWE-PolyBench: A multi-language benchmark for repository level evaluation of coding agents

Coding agents powered by large language models have shown impressive capabilities in software engineering tasks, but evaluating their performance across diverse programming languages and real-world scenarios remains challenging. We introduce SWE-PolyBench, a new multi-language benchmark for repository-level, execution-based evaluation of coding agents. SWE-PolyBench contains 2110 instances from 21 repositories and includes tasks in Java (165), JavaScript (1017), TypeScript (729) and Python (199), covering bug fixes, feature additions, and code refactoring. We provide a task and repository-stratified subsample (SWE-PolyBench500) and release an evaluation harness allowing for fully automated evaluation. To enable a more comprehensive comparison of coding agents, this work also presents a novel set of metrics rooted in syntax tree analysis. We evaluate leading open source coding agents on SWE-PolyBench, revealing their strengths and limitations across languages, task types, and complexity classes. Our experiments show that current agents exhibit uneven performances across languages and struggle with complex problems while showing higher performance on simpler tasks. SWE-PolyBench aims to drive progress in developing more versatile and robust AI coding assistants for real-world software engineering. Our datasets and code are available at: https://github.com/amazon-science/SWE-PolyBench

LocAgent: Graph-Guided LLM Agents for Code Localization

Code localization--identifying precisely where in a codebase changes need to be made--is a fundamental yet challenging task in software maintenance. Existing approaches struggle to efficiently navigate complex codebases when identifying relevant code sections. The challenge lies in bridging natural language problem descriptions with the appropriate code elements, often requiring reasoning across hierarchical structures and multiple dependencies. We introduce LocAgent, a framework that addresses code localization through graph-based representation. By parsing codebases into directed heterogeneous graphs, LocAgent creates a lightweight representation that captures code structures (files, classes, functions) and their dependencies (imports, invocations, inheritance), enabling LLM agents to effectively search and locate relevant entities through powerful multi-hop reasoning. Experimental results on real-world benchmarks demonstrate that our approach significantly enhances accuracy in code localization. Notably, our method with the fine-tuned Qwen-2.5-Coder-Instruct-32B model achieves comparable results to SOTA proprietary models at greatly reduced cost (approximately 86% reduction), reaching up to 92.7% accuracy on file-level localization while improving downstream GitHub issue resolution success rates by 12% for multiple attempts (Pass@10). Our code is available at https://github.com/gersteinlab/LocAgent.