RegNet
Overview
The RegNet model was proposed in Designing Network Design Spaces by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr DollΓ‘r.
The authors design search spaces to perform Neural Architecture Search (NAS). They first start from a high dimensional search space and iteratively reduce the search space by empirically applying constraints based on the best-performing models sampled by the current search space.
The abstract from the paper is the following:
In this work, we present a new network design paradigm. Our goal is to help advance the understanding of network design and discover design principles that generalize across settings. Instead of focusing on designing individual network instances, we design network design spaces that parametrize populations of networks. The overall process is analogous to classic manual design of networks, but elevated to the design space level. Using our methodology we explore the structure aspect of network design and arrive at a low-dimensional design space consisting of simple, regular networks that we call RegNet. The core insight of the RegNet parametrization is surprisingly simple: widths and depths of good networks can be explained by a quantized linear function. We analyze the RegNet design space and arrive at interesting findings that do not match the current practice of network design. The RegNet design space provides simple and fast networks that work well across a wide range of flop regimes. Under comparable training settings and flops, the RegNet models outperform the popular EfficientNet models while being up to 5x faster on GPUs.
Tips:
- One can use AutoFeatureExtractor to prepare images for the model.
- The huge 10B model from Self-supervised Pretraining of Visual Features in the Wild, trained on one billion Instagram images, is available on the hub
This model was contributed by Francesco. The TensorFlow version of the model was contributed by sayakpaul and ariG23498. The original code can be found here.
RegNetConfig
class transformers.RegNetConfig
< source >( num_channels = 3 embedding_size = 32 hidden_sizes = [128, 192, 512, 1088] depths = [2, 6, 12, 2] groups_width = 64 layer_type = 'y' hidden_act = 'relu' **kwargs )
Parameters
-
num_channels (
int
, optional, defaults to 3) — The number of input channels. -
embedding_size (
int
, optional, defaults to 64) — Dimensionality (hidden size) for the embedding layer. - hidden_sizes (
List[int]
, optional, defaults to[256, 512, 1024, 2048]
) — Dimensionality (hidden size) at each stage. -
depths (
List[int]
, optional, defaults to[3, 4, 6, 3]
) — Depth (number of layers) for each stage. -
layer_type (
str
, optional, defaults to"y"
) — The layer to use, it can be either"x" or
“y”. An
xlayer is a ResNet's BottleNeck layer with
reductionfixed to
1. While a
ylayer is a
x` but with squeeze and excitation. Please refer to the paper for a detailed explanation of how these layers were constructed. - hidden_act (
str
, optional, defaults to"relu"
) — The non-linear activation function in each block. If string,"gelu"
,"relu"
,"selu"
and"gelu_new"
are supported. -
downsample_in_first_stage (
bool
, optional, defaults toFalse
) — IfTrue
, the first stage will downsample the inputs using astride
of 2.
This is the configuration class to store the configuration of a RegNetModel. It is used to instantiate a RegNet model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the RegNet facebook/regnet-y-040 architecture.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import RegNetConfig, RegNetModel
>>> # Initializing a RegNet regnet-y-40 style configuration
>>> configuration = RegNetConfig()
>>> # Initializing a model from the regnet-y-40 style configuration
>>> model = RegNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
RegNetModel
class transformers.RegNetModel
< source >( config )
Parameters
- config (RegNetConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare RegNet model outputting raw features without any specific head on top. This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
pixel_values: Tensor
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
)
β
transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention
or tuple(torch.FloatTensor)
Parameters
-
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoFeatureExtractor. SeeAutoFeatureExtractor.__call__()
for details. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention
or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RegNetConfig) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
torch.FloatTensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state after a pooling operation on the spatial dimensions. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, num_channels, height, width)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
The RegNetModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoFeatureExtractor, RegNetModel
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/regnet-y-040")
>>> model = RegNetModel.from_pretrained("facebook/regnet-y-040")
>>> inputs = feature_extractor(image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1088, 7, 7]
RegNetForImageClassification
class transformers.RegNetForImageClassification
< source >( config )
Parameters
- config (RegNetConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet.
This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >(
pixel_values: Tensor = None
labels: Tensor = None
output_hidden_states: bool = None
return_dict: bool = None
)
β
transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)
Parameters
-
pixel_values (
torch.FloatTensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoFeatureExtractor. SeeAutoFeatureExtractor.__call__()
for details. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)
A transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (RegNetConfig) and inputs.
- loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) β Classification (or regression if config.num_labels==1) loss. - logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax). - hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape(batch_size, num_channels, height, width)
. Hidden-states (also called feature maps) of the model at the output of each stage.
The RegNetForImageClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoFeatureExtractor, RegNetForImageClassification
>>> import torch
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/regnet-y-040")
>>> model = RegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
>>> inputs = feature_extractor(image, return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat
TFRegNetModel
class transformers.TFRegNetModel
< source >( *args **kwargs )
Parameters
- This model is a Tensorflow — [tf.keras.layers.Layer](https —//www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
- regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and — behavior. — config (RegNetConfig): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare RegNet model outputting raw features without any specific head on top.
call
< source >(
pixel_values: Tensor
output_hidden_states: typing.Optional[bool] = None
return_dict: typing.Optional[bool] = None
training = False
)
β
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention
or tuple(tf.Tensor)
Parameters
-
pixel_values (
tf.Tensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoFeatureExtractor. SeeAutoFeatureExtractor.__call__()
for details. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention
or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFBaseModelOutputWithPoolingAndNoAttention
or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (RegNetConfig) and inputs.
-
last_hidden_state (
tf.Tensor
of shape(batch_size, num_channels, height, width)
) β Sequence of hidden-states at the output of the last layer of the model. -
pooler_output (
tf.Tensor
of shape(batch_size, hidden_size)
) β Last layer hidden-state after a pooling operation on the spatial dimensions. -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, num_channels, height, width)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
The TFRegNetModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoFeatureExtractor, TFRegNetModel
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/regnet-y-040")
>>> model = TFRegNetModel.from_pretrained("facebook/regnet-y-040")
>>> inputs = feature_extractor(image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1088, 7, 7]
TFRegNetForImageClassification
class transformers.TFRegNetForImageClassification
< source >( *args **kwargs )
Parameters
- This model is a Tensorflow — [tf.keras.layers.Layer](https —//www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
- regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and — behavior. — config (RegNetConfig): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet.
call
< source >(
pixel_values: Tensor = None
labels: Tensor = None
output_hidden_states: bool = None
return_dict: bool = None
training = False
)
β
transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
Parameters
-
pixel_values (
tf.Tensor
of shape(batch_size, num_channels, height, width)
) — Pixel values. Pixel values can be obtained using AutoFeatureExtractor. SeeAutoFeatureExtractor.__call__()
for details. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. -
return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. -
labels (
tf.Tensor
of shape(batch_size,)
, optional) — Labels for computing the image classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_tf_outputs.TFSequenceClassifierOutput or tuple(tf.Tensor)
A transformers.modeling_tf_outputs.TFSequenceClassifierOutput or a tuple of tf.Tensor
(if
return_dict=False
is passed or when config.return_dict=False
) comprising various elements depending on the
configuration (RegNetConfig) and inputs.
-
loss (
tf.Tensor
of shape(batch_size, )
, optional, returned whenlabels
is provided) β Classification (or regression if config.num_labels==1) loss. -
logits (
tf.Tensor
of shape(batch_size, config.num_labels)
) β Classification (or regression if config.num_labels==1) scores (before SoftMax). -
hidden_states (
tuple(tf.Tensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) β Tuple oftf.Tensor
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(tf.Tensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) β Tuple oftf.Tensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The TFRegNetForImageClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoFeatureExtractor, TFRegNetForImageClassification
>>> import tensorflow as tf
>>> from datasets import load_dataset
>>> dataset = load_dataset("huggingface/cats-image")
>>> image = dataset["test"]["image"][0]
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/regnet-y-040")
>>> model = TFRegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
>>> inputs = feature_extractor(image, return_tensors="tf")
>>> logits = model(**inputs).logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_label = int(tf.math.argmax(logits, axis=-1))
>>> print(model.config.id2label[predicted_label])
tabby, tabby cat