Spaces:
Runtime error
Runtime error
File size: 59,241 Bytes
1699569 6ce67d2 1699569 575134c 1699569 6ce67d2 e5a12b8 62faff0 2267bcd 66e83e0 575134c 5e8245c b96b5eb e36ad26 7978486 e36ad26 c6e3011 5e8245c b96b5eb 5e8245c b96b5eb 5e8245c b96b5eb 5e8245c b96b5eb 1699569 62faff0 f21967a a6d026f f192d73 62faff0 3559da9 f2f40f0 f192d73 afb8bf9 62faff0 3559da9 f2f40f0 afb8bf9 a6d026f f21967a 2bba935 e36ad26 6ce67d2 7978486 e80527e 7978486 6ce67d2 7978486 e80527e e36ad26 7978486 e80527e 7978486 6ce67d2 c6e3011 e48b5b5 7978486 6ce67d2 e36ad26 8d11e9c 1604b8a 6ce67d2 6f8b956 0bb1f3c 6ce67d2 0bb1f3c 6ce67d2 e36ad26 7978486 e36ad26 7978486 8d11e9c e6722c7 1604b8a 6ce67d2 105ed33 62faff0 2bba935 b2912c4 89540ca 6ce67d2 1699569 e48b5b5 2267bcd 7978486 62faff0 e48b5b5 f21967a 8d11e9c e32c352 e80527e 8d11e9c 6ce67d2 8d11e9c 6ce67d2 8d11e9c 6ce67d2 7978486 e32c352 8d11e9c f67304b 8d11e9c c5c0a51 8d11e9c 8eb1090 029e89d 6ce67d2 8d11e9c 6ce67d2 575134c 029e89d a363af1 575134c 8d11e9c 6ce67d2 8d11e9c 6ce67d2 8d11e9c 6ce67d2 8d11e9c 6ce67d2 8d11e9c f67304b 8d11e9c 7978486 8d11e9c 6ce67d2 8d11e9c 6ce67d2 8d11e9c 6ce67d2 8d11e9c 7978486 6ce67d2 8d11e9c 575134c 6ce67d2 575134c 6ce67d2 575134c 6ce67d2 575134c 6ce67d2 575134c 6ce67d2 575134c 6ce67d2 575134c 6ce67d2 575134c 6ce67d2 575134c 6ce67d2 575134c 6ce67d2 575134c f67304b 6ce67d2 8d11e9c 575134c 8d11e9c 314d3c7 029e89d 575134c 029e89d 3501b81 575134c a363af1 575134c 8d11e9c 575134c 8d11e9c 6ce67d2 8d11e9c 575134c 8d11e9c 575134c 8d11e9c 575134c 8d11e9c 575134c 8d11e9c 575134c 8d11e9c 575134c 8d11e9c 575134c 8d11e9c 575134c 8d11e9c 575134c 8d11e9c 575134c 8d11e9c 575134c 8d11e9c 4b2cc15 6ce67d2 ae598a1 8d11e9c 575134c 8d11e9c 575134c 8d11e9c ae598a1 8d11e9c d2396af 8d11e9c 575134c 8d11e9c 6ce67d2 8eb1090 62faff0 6ce67d2 62faff0 fb7bdf2 62faff0 fb7bdf2 2267bcd 8eb1090 2267bcd 6ce67d2 2267bcd 6ce67d2 2267bcd 6ce67d2 8eb1090 66e83e0 40e9078 527140e 40e9078 575134c 6ce67d2 f2f40f0 ff86fbf 66e83e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 |
import streamlit as st
import time
import concurrent.futures
import json
# import tensorflow
from gensim.models import Word2Vec
import pandas as pd
import threading
import matplotlib.pyplot as plt
import squarify
import numpy as np
import re
import urllib.request
import random
import plotly.express as px
import plotly.graph_objs as go
from streamlit.components.v1 import html
st.set_page_config(page_title="OncoDigger", page_icon=":microscope:", layout="wide", # centered
initial_sidebar_state="auto",
menu_items={'About': "OncoDigger is a Natural Language Processing (NLP) that harnesses Word2Vec to mine"
" insight from pubmed abstracts. Created by Jimmie E. Fata, PhD, fata4science@gmail.com"})
analytics_code = '''
<head>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-EKFSW65C2P"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-EKFSW65C2P');
</script>
</head>
'''
html(analytics_code, height=0)
# Define the HTML and CSS styles
st.markdown("""
<style>
[data-testid=stSidebar] {
background-color: #99CCFF;
}
</style>
""", unsafe_allow_html=True)
st.markdown("""
<style>
body {
background-color: #CCFFFF;
# color: #ffffff;
# font-size: 1px
}
.stApp {
background-color: #CCFFFF;
# color: #ffffff;
# font-size: 1px
}
</style>
""", unsafe_allow_html=True)
st.header(":red[*O*]nco:red[*D*]igger")
st.subheader(
"A web app designed to explore massive amounts of :red[*PubMed abstracts*] for a deeper understanding of your research. Results are driven "
"by Machine Learning and Natural Language Processing algorithms, which allow you to scan and mine information from hundreds of thousands of abstracts in seconds.")
def custom_subheader(text, identifier, font_size):
st.markdown(f"<h3 id='{identifier}' style='font-size: {font_size}px;'>{text}</h3>", unsafe_allow_html=True)
custom_subheader("To begin, simply select a cancer corpus from the left sidebar and enter a keyword "
"you wish to explore within the corpus. OncoDigger will determine the top words, "
"genes, drugs, phytochemicals, and compounds that are contextually and semantically related "
"to your input, both directly and indirectly. Dive in and enjoy the exploration!",
"unique-id", 18)
st.markdown("---")
# Define the correct password
# CORRECT_PASSWORD = "123"
# Define a function to check if the password is correct
# def authenticate(password):
# if password == CORRECT_PASSWORD:
# return True
# else:
# return False
#
# # Create a Streamlit input field for the password
# password = st.text_input("Enter password:", type="password")
#
# # If the password is correct, show the app content
# if authenticate(password):
opt = st.sidebar.radio("Select a PubMed Corpus", options=('Breast Cancer corpus', 'Lung Cancer corpus',
'Skin Cancer corpus', 'Colorectal Cancer corpus',
'Prostate Cancer corpus', 'Lymphoma Cancer corpus'))
# if opt == "Clotting corpus":
# model_used = ("pubmed_model_clotting")
# num_abstracts = 45493
# database_name = "Clotting"
# if opt == "Neuroblastoma corpus":
# model_used = ("pubmed_model_neuroblastoma")
# num_abstracts = 29032
# database_name = "Neuroblastoma"
if opt == "Breast Cancer corpus":
model_used = ("breast_cancer_pubmed_model")
num_abstracts = 204381
database_name = "Breast_cancer"
if opt == "Lung Cancer corpus":
model_used = ("lung_cancer_pubmed_model")
num_abstracts = 143886
database_name = "Lung_cancer"
if opt == "Colorectal Cancer corpus":
model_used = ("colorectal_cancer_pubmed_model")
num_abstracts = 140000
database_name = "Colorectal_cancer"
if opt == "Prostate Cancer corpus":
model_used = ("prostate_cancer_pubmed_model")
num_abstracts = 89782
database_name = "Prostate_cancer"
if opt == "Skin Cancer corpus":
model_used = ("skin_cancer_pubmed_model")
num_abstracts = 176568
database_name = "Skin_cancer"
if opt == "Lymphoma Cancer corpus":
model_used = ("lymphoma_cancer_pubmed_model")
num_abstracts = 79000
database_name = "Lymphoma_cancer"
st.header(f":blue[{database_name} Pubmed corpus.]")
text_input_value = st.text_input(f"Enter one term to search within the {database_name} corpus")
query = text_input_value
query = query.lower()
query = query.strip() # This line will remove any leading or trailing spaces
query = re.sub("[,.?!&*;:]", "", query)
query = re.sub(" ", "-", query)
# matches = [" "]
# if any([x in query for x in matches]):
# st.write("Please only enter one term or a term without spaces")
# # query = input ("Enter your keyword(s):")
if query:
bar = st.progress(0)
time.sleep(.05)
st.caption(
f"Searching {num_abstracts} {database_name} PubMed primary abstracts covering 1990-2022 (Reviews not included)")
for i in range(10):
bar.progress((i + 1) * 10)
time.sleep(.1)
try:
model = Word2Vec.load(f"{model_used}") # you can continue training with the loaded model!
words = list(model.wv.key_to_index)
X = model.wv[model.wv.key_to_index]
# print(model.wv['bfgf'])
model2 = model.wv[query]
# print(model.wv.similar_by_word('bfgf', topn=50, restrict_vocab=None))
df = pd.DataFrame(X)
if 'melanin' in model.wv.key_to_index:
print("The term 'melanin' is present in the model.")
else:
print("The term 'melanin' is not present in the model.")
def get_compound_ids(compound_names):
with concurrent.futures.ThreadPoolExecutor() as executor:
compound_ids = list(executor.map(get_compound_id, compound_names))
return compound_ids
import requests
def get_compound_id(compound_name):
url = f"http://rest.kegg.jp/find/compound/{compound_name}"
response = requests.get(url)
if response.status_code == 200:
result = response.text.split('\n')
if result[0]:
compound_id = result[0].split('\t')[0]
return compound_id
return None
# except:
# st.error("Term occurrence is too low - please try another term")
# st.stop()
st.markdown("---")
try:
table = model.wv.most_similar_cosmul(query, topn=10000)
table = (pd.DataFrame(table))
table.index.name = 'Rank'
table.columns = ['Word', 'SIMILARITY']
pd.set_option('display.max_rows', None)
table2 = table.copy()
st.markdown(
f"<h2 style='text-align: center; font-family: Arial; font-size: 20px; font-weight: bold;'>"
f"Top <span style='color:red; font-style: italic;'>10000</span> words in an interactive embedding map most similar to <span style='color:red; font-style: italic;'>{query}</span> in <span style='color:red; font-style: italic;'>{database_name}</span> "
f"PubMed corpus: Zoom in to the black diamond to find <span style='color:red; font-style: italic;'>{query}</span></h2>",
unsafe_allow_html=True)
# Set the max number of words to display
value_word = min(100, len(table2))
try:
value_word = min(50, len(table2))
# Get the top 50 similar words to the query
top_words = model.wv.most_similar_cosmul(query, topn=10000)
words = [word for word, sim in top_words]
words = [word.replace(' ', '-') for word in words]
sims = [sim for word, sim in top_words]
X_top = model.wv[words]
# Compute similarities between query and top 100 words
sims_query_top = sims # print(sims_query_top)
except Exception as e:
print("Error:", e)
# Generate a 2D scatter plot of word embeddings using Plotly
fig = px.scatter(x=X_top[:, 0], y=X_top[:, 1], color=sims_query_top, color_continuous_scale="RdYlGn", )
# Change background color to black
fig.update_layout(plot_bgcolor='#CCFFFF')
# Change color of text to white
fig.update_layout(xaxis=dict(gridcolor='#CCFFFF', color='blue'),
yaxis=dict(gridcolor='#CCFFFF', color='blue'))
# fig.update_traces(hovertemplate='<b>%{hovertext}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>')
# fig.update_layout(title=dict(
# text=f"Top 10000 words in an interactive embedding map for {query} in {database_name} PubMed corpus"
# f": Zoom in to the black diamond to find {query}", x=0.5, y=1, xanchor='center', yanchor='top',
# font=dict(color='black')))
fig.update_coloraxes(colorbar_title=f"Similarity with {query}")
# Represent query as a large red diamond
fig.add_trace(go.Scatter(x=[model.wv[query][0]], y=[model.wv[query][1]], mode='markers',
marker=dict(size=12, color='black', symbol='diamond'), name=query, hovertext=query,
showlegend=False))
# Add label for the query above the diamond
fig.add_trace(go.Scatter(x=[model.wv[query][0]], y=[model.wv[query][1]], mode='text', text=[query],
textposition='top right', textfont=dict(color='blue', size=10), hoverinfo='none',
showlegend=False))
# Add circles for the top 50 similar words
fig.add_trace(go.Scatter(x=X_top[:, 0], y=X_top[:, 1], mode='markers',
marker=dict(size=2, color=sims_query_top, colorscale='RdYlGn', symbol='circle'),
text=words, customdata=sims, name=''))
fig.update(layout_coloraxis_showscale=True)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
st.plotly_chart(fig, use_container_width=True)
st.markdown(
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_word} "
f"</span>words contextually and semantically similar to "
f"<span style='color:red; font-style: italic;'>{query} </span>within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus. "
f"Click on the squares to expand and also the PubMed and Wikipedia links for more word information</span></p></b>",
unsafe_allow_html=True)
short_table = table2.head(value_word).round(2)
short_table.index += 1
short_table.index = (1 / short_table.index) * 10
sizes = short_table.index.tolist()
short_table.set_index('Word', inplace=True)
table2["SIMILARITY"] = 'Similarity Score ' + table2.head(value_word)["SIMILARITY"].round(2).astype(str)
rank_num = list(short_table.index.tolist())
df = short_table
df['text'] = short_table.index
df['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in short_table.index]
df['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in short_table.index]
df.loc[:, 'database'] = database_name
fig = px.treemap(df, path=[short_table.index], values=sizes, custom_data=['href', 'text', 'database', 'href2'],
hover_name=(table2.head(value_word)['SIMILARITY']))
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000", texttemplate="<br><span "
"style='font-family: Arial; font-size: 20px;'>%{customdata[1]}<br><br>"
"<a href='%{customdata[0]}'>PubMed"
"</a><br><br><a href='%{customdata[3]}'>Wikipedia"
"</span></a>")
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["lightgreen"])
# st.pyplot(fig2)
st.plotly_chart(fig, use_container_width=True)
# st.caption(
# "Gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
# st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
csv = table2.head(value_word).to_csv().encode('utf-8')
st.download_button(label=f"download top {value_word} words (csv)", data=csv,
file_name=f'{database_name}_words.csv', mime='text/csv')
except:
st.warning(
f"This selection exceeds the number of similar words related to {query} within the {database_name} corpus, please choose a lower number")
except KeyError:
st.warning(
"This word is not found in the corpus, it could be because it is not spelled correctly or could be that it does not have enough representation within the corpus, please try again")
# try:
# value_word = min(50, len(table2))
# # Get the top 50 similar words to the query
# top_words = model.wv.most_similar_cosmul(query, topn=value_word)
# words = [word for word, sim in top_words]
# words = [word.replace(' ', '-') for word in words]
# sims = [sim for word, sim in top_words]
# X_top = model.wv[words]
#
# # Compute similarities between query and top 100 words
# sims_query_top = sims # print(sims_query_top)
# except Exception as e:
# print("Error:", e)
#
#
# # Generate a 3D scatter plot of word embeddings using Plotly
# fig = px.scatter_3d(x=X_top[:, 0], y=X_top[:, 1], z=X_top[:, 2], text=words, color=sims_query_top,
# color_continuous_scale="RdYlGn", hover_name=words, hover_data={"color": sims_query_top})
#
# # Change background color to black
# fig.update_layout(scene=dict(bgcolor='#CCFFFF'))
#
# # Change color of text to white
# fig.update_layout(scene=dict(xaxis=dict(backgroundcolor='#CCFFFF', color='blue'),
# yaxis=dict(backgroundcolor='#CCFFFF', color='blue'),
# zaxis=dict(backgroundcolor='#CCFFFF', color='blue')))
#
# fig.update_traces(hovertemplate='<b>%{hovertext}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>')
# fig.update_layout(title=dict(text=f"Word embedding map for {query} in {database_name} PubMed corpus", x=0.5, y=0.95,
# xanchor='center', yanchor='top', font=dict(color='black')),
# scene=dict(xaxis_title="Dimension 1", yaxis_title="Dimension 2", zaxis_title="Dimension 3"))
# fig.update_coloraxes(colorbar_title="Similarity with query")
#
# # Represent query as a large red diamond
# fig.add_trace(go.Scatter3d(x=[model.wv[query][0]], y=[model.wv[query][1]], z=[model.wv[query][2]], mode='markers',
# marker=dict(size=7, color='black', symbol='diamond'), name=query, hovertext=query, showlegend=False))
#
# # Add label for the query above the diamond
# fig.add_trace(
# go.Scatter3d(x=[model.wv[query][0]], y=[model.wv[query][1]], z=[model.wv[query][2]], mode='text', text=[query],
# textposition='bottom center', textfont=dict(color='blue', size=10), hoverinfo='none', showlegend=False))
#
# # Add circles for the top 50 similar words
# fig.add_trace(go.Scatter3d(x=X_top[:, 0], y=X_top[:, 1], z=X_top[:, 2], mode='markers',
# marker=dict(size=2, color=sims_query_top, colorscale='RdYlGn', symbol='circle'),
# hovertemplate='<b>%{text}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>',
# text=words, customdata=sims, name=''))
#
# fig.update(layout_coloraxis_showscale=True)
# fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
# fig.update_annotations(visible=False)
#
# st.plotly_chart(fig, use_container_width=True)
st.markdown("---")
try:
df1 = table.copy()
df2 = pd.read_csv('Human Genes.csv')
m = df1.Word.isin(df2.symbol)
df1 = df1[m]
df1.rename(columns={'Word': 'Genes'}, inplace=True)
df_len = len(df1)
# print(len(df1))
# st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Populate a treemap to visualize "
# f"<span style='color:red; font-style: italic;'>proteins</span> contextually "
# f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# unsafe_allow_html=True)
# Set the number of proteins to display
value_gene = min(df_len, 100)
st.markdown(
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_gene} "
f"</span>human genes contextually and semantically similar to "
f"<span style='color:red; font-style: italic;'>{query} </span>within the <span style='color:red; font-style: italic;'>{database_name} </span>corpus. Click on the squares to expand and also the Pubmed and GeneCard links for more gene information</span></p></b>",
unsafe_allow_html=True)
df11 = df1.head(value_gene).copy()
df11.index = (1 / df11.index) * 10000
sizes = df11.index.tolist()
df11.set_index('Genes', inplace=True)
df4 = df1.copy()
# print(df4.head(10))
df4["SIMILARITY"] = 'Similarity Score ' + df4.head(value_gene)["SIMILARITY"].round(2).astype(str)
df4.reset_index(inplace=True)
# df4 = df4.rename(columns={'Protein': 'symbol2'})
# print(df4)
# # Use df.query to get a subset of df1 based on ids in df2
# subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
# # Use merge to join the two DataFrames on id
# result = pd.merge(subset, df2b, on='symbol2')
# print(result)
if value_gene <= df_len:
# Define the `text` column for labels and `href` column for links
df11['text'] = df11.index
df11['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df11['text']]
df11['href2'] = [f'https://www.genecards.org/cgi-bin/carddisp.pl?gene=' + c for c in df11['text']]
assert isinstance(df11, object)
df11['database'] = database_name
# df11['name'] = [c for c in result['Approved name']]
# Create the treemap using `px.treemap`
fig = px.treemap(df11, path=[df11['text']], values=sizes, custom_data=['href', 'database', 'href2', 'text'],
hover_name=(df4.head(value_gene)['SIMILARITY']))
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
texttemplate="<span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}<br><br>"
"<a href='%{customdata[0]}'>PubMed"
"</a><br><br><a href='%{customdata[2]}'>GeneCard"
"</span></a>")
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["LightPink"])
# # display the treemap in Streamlit
# with treemap2:
# st.pyplot(fig2)
st.plotly_chart(fig, use_container_width=True)
# st.caption(
# "Gene designation and database provided by KEGG homo sapien gene list: https://rest.kegg.jp/list/hsa")
# st.caption("Gene information provided by GeneCards: https://www.genecards.org//")
st.caption(
"Human gene designation and database provided by HUGO Gene Nomenclature Committee (HGNC): https://www.genenames.org/")
st.caption("Gene designation add in exceptions [p21, p53, her2, her3]")
st.caption("Gene information provided by GeneCards: https://www.genecards.org//")
csv = df1.head(value_gene).to_csv().encode('utf-8')
st.download_button(label=f"download top {value_gene} genes (csv)", data=csv,
file_name=f'{database_name}_genes.csv', mime='text/csv')
else:
st.warning(
f"This selection exceeds the number of similar proteins related to {query} within the {database_name} corpus, please choose a lower number")
value_gene = min(df_len, 50)
st.markdown(
f"<h2 style='text-align: center; font-family: Arial; font-size: 20px; font-weight: bold;'>3D interactive "
f"gene embedding map for <span style='color:red; font-style: italic;'>{value_gene}</span> genes most similar "
f"with <span style='color:red; font-style: italic;'>{query}</span> in <span style='color:red; font-style: italic;'>{database_name}</span> PubMed corpus</h2>",
unsafe_allow_html=True)
try:
# Get the top 50 similar genes to the query
value_gene = min(df_len, 50)
top_words = model.wv.most_similar_cosmul(query, topn=value_gene)
words = df11.head(value_gene).index
words = [word.replace(' ', '-') for word in words]
# print(words)
sims = df4.head(value_gene)["SIMILARITY"].tolist()
# print(sims)
X_top = model.wv[words] # print(X_top)
except Exception as e:
print("Error:", e)
# Remove the text "Similarity Score" from each element in the sims list
sims_query_top = [float(sim.split()[-1]) for sim in sims]
# print(sims_query_top)
# Generate a 3D scatter plot of word embeddings using Plotly
fig2 = px.scatter_3d(x=X_top[:, 0], y=X_top[:, 1], z=X_top[:, 2], text=words, color=sims_query_top,
color_continuous_scale="RdYlGn", hover_name=words,
hover_data={"color": sims_query_top})
# Change background color to black
fig2.update_layout(scene=dict(bgcolor='#CCFFFF'))
# Change color of text to white
fig2.update_layout(scene=dict(xaxis=dict(backgroundcolor='#CCFFFF', color='blue'),
yaxis=dict(backgroundcolor='#CCFFFF', color='blue'),
zaxis=dict(backgroundcolor='#CCFFFF', color='blue')))
fig2.update_traces(
hovertemplate='<b>%{hovertext}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>')
fig2.update_layout(
title=dict(text=f"", x=0.5, y=0.95,
xanchor='center', yanchor='top', font=dict(color='black')),
scene=dict(xaxis_title="Dimension 1", yaxis_title="Dimension 2", zaxis_title="Dimension 3"))
fig2.update_coloraxes(colorbar_title=f"Similarity with {query}")
# Represent query as a large red diamond
fig2.add_trace(
go.Scatter3d(x=[model.wv[query][0]], y=[model.wv[query][1]], z=[model.wv[query][2]], mode='markers',
marker=dict(size=7, color='black', symbol='diamond'), name=query, hovertext=query,
showlegend=False))
# Add label for the query above the diamond
fig2.add_trace(
go.Scatter3d(x=[model.wv[query][0]], y=[model.wv[query][1]], z=[model.wv[query][2]], mode='text',
text=[query], textposition='bottom center', textfont=dict(color='blue', size=10),
hoverinfo='none', showlegend=False))
# Add circles for the top 50 similar words
fig2.add_trace(go.Scatter3d(x=X_top[:, 0], y=X_top[:, 1], z=X_top[:, 2], mode='markers',
marker=dict(size=2, color=sims_query_top, colorscale='RdYlGn', symbol='circle'),
hovertemplate='<b>%{text}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>',
text=words, customdata=sims, name=''))
fig2.update(layout_coloraxis_showscale=True)
fig2.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig2.update_annotations(visible=False)
st.plotly_chart(fig2, use_container_width=True)
st.markdown("---")
# print()
# print("Human genes similar to " + str(query))
df1 = table.copy()
df2 = pd.read_csv('kegg_drug_list_lowercase.csv')
m = df1.Word.isin(df2.drugs)
df1 = df1[m]
df1.rename(columns={'Word': 'Drugs'}, inplace=True)
df_len = len(df1)
# print(len(df1))
# df1["Human Gene"] = df1["Human Gene"].str.upper()
# print(df1.head(50))
# print()
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# time.sleep(2)
# Create the slider with increments of 5 up to 100
# Remove the slider and set the value_compound to the minimum of the number of rows in the dataframe and 100
value_drug = min(df1.shape[0], 100)
# print(value_drug)
# st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Visualize "
# f"<span style='color:red; font-style: italic;'>KEGG compounds</span> contextually "
# f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# unsafe_allow_html=True)
st.markdown(
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_drug} "
f"</span>Drugs contextually and semantically similar to "
f"<span style='color:red; font-style: italic;'>{query}</span> within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus. Click on the squares to expand and the Pubmed and Wikipedia links for more compound information</span></p></b>",
unsafe_allow_html=True)
df13 = df1.head(value_drug).copy()
df13.index = (1 / df13.index) * 10000
sizes = df13.index.tolist()
df13.set_index('Drugs', inplace=True)
df6 = df1.copy()
# print(df4.head(10))
df6["SIMILARITY"] = 'Similarity Score ' + df6.head(value_drug)["SIMILARITY"].round(2).astype(str)
df6.reset_index(inplace=True)
# df4 = df4.rename(columns={'Protein': 'symbol2'})
# print(df4)
# # Use df.query to get a subset of df1 based on ids in df2
# subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
# # Use merge to join the two DataFrames on id
# result = pd.merge(subset, df2b, on='symbol2')
# print(result)
if value_drug <= df_len:
# Define the `text` column for labels and `href` column for links
# Reset the index
df13.reset_index(inplace=True)
# Replace hyphens with spaces in the 'text' column
df13['Drugs'] = df13['Drugs'].str.replace('-', ' ')
# Set the 'text' column back as the index
df13.set_index('Drugs', inplace=True)
df13['text'] = df13.index
df13['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df13['text']]
df13['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df13['text']]
assert isinstance(df13, object)
df13['database'] = database_name
# df11['name'] = [c for c in result['Approved name']]
# Create the treemap using `px.treemap`
fig = px.treemap(df13, path=[df13['text']], values=sizes, custom_data=['href', 'database', 'href2', 'text'],
hover_name=(df6.head(value_drug)['SIMILARITY']))
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
texttemplate="<span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}<br><br>"
"<a href='%{customdata[0]}'>PubMed"
"</a><br><br><a href='%{customdata[2]}'>Wikipedia"
"</span></a>")
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["Thistle"])
# # display the treemap in Streamlit
# with treemap2:
# st.pyplot(fig2)
st.plotly_chart(fig, use_container_width=True)
st.caption("Drug designation and database provided by KEGG: https://www.kegg.jp/kegg/drug/")
csv = df1.head(value_drug).to_csv().encode('utf-8')
st.download_button(label=f"download top {value_drug} drugs (csv)", data=csv,
file_name=f'{database_name}_drugs.csv', mime='text/csv')
else:
st.warning(
f"This selection exceeds the number of similar drugs related to {query} within the {database_name} corpus, please choose a lower number")
# try:
# value_drug = min(df_len, 50)
# top_words = model.wv.most_similar_cosmul(query, topn=value_drug)
# # print(top_words)
# words = df13.head(value_drug).index
# words = [word.replace(' ', '-') for word in words]
# # print(words)
# sims = df6.head(value_drug)["SIMILARITY"].tolist()
# # print(sims)
# X_top = model.wv[words]
# except Exception as e:
# print("Error:", e)
#
#
# # Remove the text "Similarity Score" from each element in the sims list
# sims_query_top = [float(sim.split()[-1]) for sim in sims]
# # print(sims_query_top)
#
# # Generate a 3D scatter plot of word embeddings using Plotly
# fig4 = px.scatter_3d(x=X_top[:, 0], y=X_top[:, 1], z=X_top[:, 2], text=words, color=sims_query_top,
# color_continuous_scale="RdYlGn", hover_name=words, hover_data={"color": sims_query_top})
#
# # Change background color to black
# fig4.update_layout(scene=dict(bgcolor='#CCFFFF'))
#
# # Change color of text to white
# fig4.update_layout(scene=dict(xaxis=dict(backgroundcolor='#CCFFFF', color='blue'),
# yaxis=dict(backgroundcolor='#CCFFFF', color='blue'),
# zaxis=dict(backgroundcolor='#CCFFFF', color='blue')))
#
# fig4.update_traces(hovertemplate='<b>%{hovertext}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>')
# fig4.update_layout(
# title=dict(text=f"Word embedding map for {query} in {database_name} PubMed corpus", x=0.5, y=0.95,
# xanchor='center', yanchor='top', font=dict(color='black')),
# scene=dict(xaxis_title="Dimension 1", yaxis_title="Dimension 2", zaxis_title="Dimension 3"))
# fig4.update_coloraxes(colorbar_title="Similarity with query")
#
# # Represent query as a large red diamond
# fig4.add_trace(
# go.Scatter3d(x=[model.wv[query][0]], y=[model.wv[query][1]], z=[model.wv[query][2]], mode='markers',
# marker=dict(size=7, color='black', symbol='diamond'), name=query, hovertext=query,
# showlegend=False))
#
# # Add label for the query above the diamond
# fig4.add_trace(go.Scatter3d(x=[model.wv[query][0]], y=[model.wv[query][1]], z=[model.wv[query][2]], mode='text',
# text=[query], textposition='bottom center', textfont=dict(color='blue', size=10),
# hoverinfo='none', showlegend=False))
#
# # Add circles for the top 50 similar words
# fig4.add_trace(go.Scatter3d(x=X_top[:, 0], y=X_top[:, 1], z=X_top[:, 2], mode='markers',
# marker=dict(size=2, color=sims_query_top, colorscale='RdYlGn', symbol='circle'),
# hovertemplate='<b>%{text}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>',
# text=words, customdata=sims, name=''))
#
# fig4.update(layout_coloraxis_showscale=True)
# fig4.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
# fig4.update_annotations(visible=False)
#
# st.plotly_chart(fig4, use_container_width=True)
# st.markdown("---")
st.markdown("---")
# print()
# print("Human genes similar to " + str(query))
df1 = table.copy()
df2 = pd.read_csv('phytochemicals.csv')
m = df1.Word.isin(df2.phyto)
df1 = df1[m]
df1.rename(columns={'Word': 'Phytochemical'}, inplace=True)
df_len = len(df1)
# print(len(df1))
# df1["Human Gene"] = df1["Human Gene"].str.upper()
# print(df1.head(50))
# print()
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# time.sleep(2)
# Create the slider with increments of 5 up to 100
# Remove the slider and set the value_compound to the minimum of the number of rows in the dataframe and 100
value_phyto = min(df1.shape[0], 100)
# st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Visualize "
# f"<span style='color:red; font-style: italic;'>KEGG compounds</span> contextually "
# f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# unsafe_allow_html=True)
st.markdown(
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_phyto} "
f"</span>Phytochemicals contextually and semantically similar to "
f"<span style='color:red; font-style: italic;'>{query}</span> within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus. "
f"Click on the squares to expand and also the Pubmed and Wikipedia links for more compound information</span></p></b>",
unsafe_allow_html=True)
df15 = df1.head(value_phyto).copy()
df15.index = (1 / df15.index) * 10000
sizes = df15.index.tolist()
df15.set_index('Phytochemical', inplace=True)
df8 = df1.copy()
# print(df4.head(10))
df8["SIMILARITY"] = 'Similarity Score ' + df8.head(value_phyto)["SIMILARITY"].round(2).astype(str)
df8.reset_index(inplace=True)
# df4 = df4.rename(columns={'Protein': 'symbol2'})
# print(df4)
# # Use df.query to get a subset of df1 based on ids in df2
# subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
# # Use merge to join the two DataFrames on id
# result = pd.merge(subset, df2b, on='symbol2')
# print(result)
if value_phyto <= df_len:
# Define the `text` column for labels and `href` column for links
# Reset the index
df15.reset_index(inplace=True)
# Replace hyphens with spaces in the 'text' column
df15['Phytochemical'] = df15['Phytochemical'].str.replace('-', ' ')
# Set the 'text' column back as the index
df15.set_index('Phytochemical', inplace=True)
df15['text'] = df15.index
df15['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df15['text']]
df15['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df15['text']]
assert isinstance(df15, object)
df15['database'] = database_name
# df11['name'] = [c for c in result['Approved name']]
# Create the treemap using `px.treemap`
fig = px.treemap(df15, path=[df15['text']], values=sizes, custom_data=['href', 'database', 'href2', 'text'],
hover_name=(df8.head(value_phyto)['SIMILARITY']))
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
texttemplate="<span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}<br><br>"
"<a href='%{customdata[0]}'>PubMed"
"</a><br><br><a href='%{customdata[2]}'>Wikipedia"
"</span></a>")
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["LightSeaGreen"])
# # display the treemap in Streamlit
# with treemap2:
# st.pyplot(fig2)
st.plotly_chart(fig, use_container_width=True)
st.caption("Phytochemical designation and database provided by PhytoHub: https://phytohub.eu/")
csv = df1.head(value_phyto).to_csv().encode('utf-8')
st.download_button(label=f"download top {value_phyto} phytochemicals (csv)", data=csv,
file_name=f'{database_name}_phytochemicals.csv', mime='text/csv')
else:
st.warning(
f"This selection exceeds the number of similar pythochemicals related to {query} within the {database_name} corpus, please choose a lower number")
# try:
# value_phyto = min(df_len, 50)
# top_words = model.wv.most_similar_cosmul(query, topn=value_phyto)
# words = df15.head(value_phyto).index
# words = [word.replace(' ', '-') for word in words]
# # print(words)
# sims = df8.head(value_phyto)["SIMILARITY"].tolist()
# # print(sims)
# X_top = model.wv[words] # print(X_top)
# except Exception as e:
# print("Error:", e)
#
# # Remove the text "Similarity Score" from each element in the sims list
# sims_query_top = [float(sim.split()[-1]) for sim in sims]
# # print(sims_query_top)
#
# # Generate a 3D scatter plot of word embeddings using Plotly
# fig4 = px.scatter_3d(x=X_top[:, 0], y=X_top[:, 1], z=X_top[:, 2], text=words, color=sims_query_top,
# color_continuous_scale="RdYlGn", hover_name=words, hover_data={"color": sims_query_top})
#
# # Change background color to black
# fig4.update_layout(scene=dict(bgcolor='#CCFFFF'))
#
# # Change color of text to white
# fig4.update_layout(scene=dict(xaxis=dict(backgroundcolor='#CCFFFF', color='blue'),
# yaxis=dict(backgroundcolor='#CCFFFF', color='blue'),
# zaxis=dict(backgroundcolor='#CCFFFF', color='blue')))
#
# fig4.update_traces(hovertemplate='<b>%{hovertext}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>')
# fig4.update_layout(
# title=dict(text=f"Word embedding map for {query} in {database_name} PubMed corpus", x=0.5, y=0.95,
# xanchor='center', yanchor='top', font=dict(color='black')),
# scene=dict(xaxis_title="Dimension 1", yaxis_title="Dimension 2", zaxis_title="Dimension 3"))
# fig4.update_coloraxes(colorbar_title="Similarity with query")
#
# # Represent query as a large red diamond
# fig4.add_trace(
# go.Scatter3d(x=[model.wv[query][0]], y=[model.wv[query][1]], z=[model.wv[query][2]], mode='markers',
# marker=dict(size=7, color='black', symbol='diamond'), name=query, hovertext=query,
# showlegend=False))
#
# # Add label for the query above the diamond
# fig4.add_trace(go.Scatter3d(x=[model.wv[query][0]], y=[model.wv[query][1]], z=[model.wv[query][2]], mode='text',
# text=[query], textposition='bottom center', textfont=dict(color='blue', size=10),
# hoverinfo='none', showlegend=False))
#
# # Add circles for the top 50 similar words
# fig4.add_trace(go.Scatter3d(x=X_top[:, 0], y=X_top[:, 1], z=X_top[:, 2], mode='markers',
# marker=dict(size=2, color=sims_query_top, colorscale='RdYlGn', symbol='circle'),
# hovertemplate='<b>%{text}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>',
# text=words, customdata=sims, name=''))
#
# fig4.update(layout_coloraxis_showscale=True)
# fig4.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
# fig4.update_annotations(visible=False)
#
# st.plotly_chart(fig4, use_container_width=True)
# st.markdown("---")
st.markdown("---")
# print()
# print("Human genes similar to " + str(query))
df1 = table.copy()
df2 = pd.read_csv('kegg_compounds_lowercase.csv')
m = df1.Word.isin(df2.compound)
df1 = df1[m]
df1.rename(columns={'Word': 'Compounds'}, inplace=True)
df_len = len(df1)
# df1["Human Gene"] = df1["Human Gene"].str.upper()
# print(df1.head(50))
# print()
# df1.head(50).to_csv("clotting_sim2.csv", index=True, header=False)
# time.sleep(2)
# Create the slider with increments of 5 up to 100
# Remove the slider and set the value_compound to the minimum of the number of rows in the dataframe and 100
value_compound = min(df1.shape[0], 100)
# st.markdown(f"<b><p style='font-family: Arial; font-size: 20px;'>Visualize "
# f"<span style='color:red; font-style: italic;'>KEGG compounds</span> contextually "
# f"and semantically similar to <span style='color:red; font-style: italic;'>{query}</span> "
# f"within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus.</p></b>",
# unsafe_allow_html=True)
st.markdown(
f"<b><p style='font-family: Arial; font-size: 20px; font-style: Bold;'>Top <span style='color:red; font-style: italic;'>{value_compound} "
f"</span>Compounds contextually and semantically similar to "
f"<span style='color:red; font-style: italic;'>{query}</span> within the <span style='color:red; font-style: italic;'>{database_name}</span> corpus. "
f"Click on the squares to expand and the Pubmed, Wikipedia, and KEGG links for more compound information (may take time to load)</span></p></b>",
unsafe_allow_html=True)
df12 = df1.head(value_compound).copy()
df12.index = (1 / df12.index) * 10000
sizes = df12.index.tolist()
df12.set_index('Compounds', inplace=True)
df5 = df1.copy()
# print(df4.head(10))
df5["SIMILARITY"] = 'Similarity Score ' + df5.head(value_compound)["SIMILARITY"].round(2).astype(str)
df5.reset_index(inplace=True)
# df4 = df4.rename(columns={'Protein': 'symbol2'})
# print(df4)
# # Use df.query to get a subset of df1 based on ids in df2
# subset = df4.head(value_gene).query('symbol2 in @df2b.symbol2')
# # Use merge to join the two DataFrames on id
# result = pd.merge(subset, df2b, on='symbol2')
# print(result)
if value_compound <= df_len:
# Define the `text` column for labels and `href` column for links
# Reset the index
df12.reset_index(inplace=True)
# Replace hyphens with spaces in the 'text' column
df12['Compounds'] = df12['Compounds'].str.replace('-', ' ')
# Set the 'text' column back as the index
df12.set_index('Compounds', inplace=True)
df12['text'] = df12.index
df12['href'] = [f'https://pubmed.ncbi.nlm.nih.gov/?term={database_name}%5Bmh%5D+NOT+review%5Bpt%5D' \
'+AND+english%5Bla%5D+AND+hasabstract+AND+1990:2022%5Bdp%5D+AND+' + c for c in df12['text']]
df12['href2'] = [f'https://en.wikipedia.org/wiki/' + c for c in df12['text']]
df12['href3'] = [f'https://www.genome.jp/entry/{compound_id}' for compound_id in
get_compound_ids(df12['text'])]
assert isinstance(df12, object)
df12['database'] = database_name
# df11['name'] = [c for c in result['Approved name']]
# Create the treemap using `px.treemap`
fig = px.treemap(df12, path=[df12['text']], values=sizes,
custom_data=['href', 'database', 'href2', 'text', 'href3'],
hover_name=(df5.head(value_compound)['SIMILARITY']))
fig.update(layout_coloraxis_showscale=False)
fig.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
fig.update_annotations(visible=False)
fig.update_traces(marker=dict(cornerradius=5), root_color="#CCFFFF", hovertemplate=None,
hoverlabel_bgcolor="lightblue", hoverlabel_bordercolor="#000000",
texttemplate="<span style='font-family: Arial; font-size: 20px;'>%{customdata[3]}<br><br>"
"<a href='%{customdata[0]}'>PubMed"
"</a><br><br><a href='%{customdata[2]}'>Wikipedia"
"</a><br><br><a href='%{customdata[4]}'>KEGG Compound Page"
"</span></a>")
fig.update_layout(uniformtext=dict(minsize=15), treemapcolorway=["LightYellow"])
# # display the treemap in Streamlit
# with treemap2:
# st.pyplot(fig2)
st.plotly_chart(fig, use_container_width=True)
st.caption("Compound designation and database provided by KEGG: https://www.kegg.jp/kegg/compound/")
csv = df1.head(value_compound).to_csv().encode('utf-8')
st.download_button(label=f"download top {value_compound} compounds (csv)", data=csv,
file_name=f'{database_name}_compounds.csv', mime='text/csv')
else:
st.warning(
f"This selection exceeds the number of similar proteins related to {query} within the {database_name} corpus, please choose a lower number")
# try:
# value_compound = min(df_len, 50)
# top_words = model.wv.most_similar_cosmul(query, topn=value_compound)
# words = df12.head(value_compound).index
# words = [word.replace(' ', '-') for word in words]
#
# sims = df5.head(value_compound)["SIMILARITY"].tolist()
# # print(sims)
# X_top = model.wv[words] # print(X_top)
# except Exception as e:
# print("Error:", e)
#
# # Remove the text "Similarity Score" from each element in the sims list
# sims_query_top = [float(sim.split()[-1]) for sim in sims]
# # print(sims_query_top)
#
# # Generate a 3D scatter plot of word embeddings using Plotly
# fig5 = px.scatter_3d(x=X_top[:, 0], y=X_top[:, 1], z=X_top[:, 2], text=words, color=sims_query_top,
# color_continuous_scale="RdYlGn", hover_name=words, hover_data={"color": sims_query_top})
#
# # Change background color to black
# fig5.update_layout(scene=dict(bgcolor='#CCFFFF'))
#
# # Change color of text to white
# fig5.update_layout(scene=dict(xaxis=dict(backgroundcolor='#CCFFFF', color='blue'),
# yaxis=dict(backgroundcolor='#CCFFFF', color='blue'),
# zaxis=dict(backgroundcolor='#CCFFFF', color='blue')))
#
# fig5.update_traces(hovertemplate='<b>%{hovertext}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>')
# fig5.update_layout(
# title=dict(text=f"Word embedding map for {query} in {database_name} PubMed corpus", x=0.5, y=0.95,
# xanchor='center', yanchor='top', font=dict(color='black')),
# scene=dict(xaxis_title="Dimension 1", yaxis_title="Dimension 2", zaxis_title="Dimension 3"))
# fig5.update_coloraxes(colorbar_title="Similarity with query")
#
# # Represent query as a large red diamond
# fig5.add_trace(
# go.Scatter3d(x=[model.wv[query][0]], y=[model.wv[query][1]], z=[model.wv[query][2]], mode='markers',
# marker=dict(size=7, color='black', symbol='diamond'), name=query, hovertext=query,
# showlegend=False))
#
# # Add label for the query above the diamond
# fig5.add_trace(go.Scatter3d(x=[model.wv[query][0]], y=[model.wv[query][1]], z=[model.wv[query][2]], mode='text',
# text=[query], textposition='bottom center', textfont=dict(color='blue', size=10),
# hoverinfo='none', showlegend=False))
#
# # Add circles for the top 50 similar words
# fig5.add_trace(go.Scatter3d(x=X_top[:, 0], y=X_top[:, 1], z=X_top[:, 2], mode='markers',
# marker=dict(size=2, color=sims_query_top, colorscale='RdYlGn', symbol='circle'),
# hovertemplate='<b>%{text}</b><br>Similarity score: %{customdata[0]:.2f}<extra></extra>',
# text=words, customdata=sims, name=''))
#
# fig5.update(layout_coloraxis_showscale=True)
# fig5.update_layout(autosize=True, paper_bgcolor="#CCFFFF", margin=dict(t=0, b=0, l=0, r=0))
# fig5.update_annotations(visible=False)
#
# st.plotly_chart(fig5, use_container_width=True)
# st.markdown("---")
# import os
# from datasets import Dataset
# # Check if the comments directory exists
# if os.path.exists('comments'):
# # Load the dataset from disk
# dataset = Dataset.load_from_disk('comments')
# else:
# # Create a new dataset
# dataset = Dataset.from_dict({'id': [], 'text': []})
# def save_comment(comment):
# # Check if the dataset exists
# if os.path.exists('comments'):
# dataset = Dataset.load_from_disk('comments')
# else:
# dataset = Dataset.from_dict({'id': [], 'text': []})
# # Append the new comment to the dataset
# new_comment = {'id': len(dataset), 'text': comment}
# dataset = dataset.concatenate(Dataset.from_dict(new_comment))
# # Save the dataset to disk
# dataset.save_to_disk('comments')
# print('Comment saved to dataset.')
# st.title("Abstractalytics Web App")
# st.write("We appreciate your feedback!")
# user_comment = st.text_area("Please send us your anonymous remarks/suggestions about the Abstractalytics Web App: "
# "(app will pause while we save your comments)")
# if st.button("Submit"):
# if user_comment:
# save_comment(user_comment)
# st.success("Your comment has been saved. Thank you for your feedback!")
# else:
# st.warning("Please enter a comment before submitting.")
# # Load the comments dataset from disk
# if os.path.exists('comments'):
# dataset = Dataset.load_from_disk('comments')
# else:
# dataset = Dataset.from_dict({'id': [], 'text': []})
# # Access the text column of the dataset
# comments = dataset['text']
# # Define the password
# PASSWORD = 'ram100pass'
# # Prompt the user for the password
# password = st.text_input('Password:', type='password')
# # Display the comments if the password is correct
# if password == PASSWORD:
# st.title('Comments')
# for comment in comments:
# st.write(comment)
# else:
# st.warning('Incorrect password')
st.markdown("---")
except:
st.warning("")
st.subheader("Cancer-related videos")
if query:
idlist = []
search_keyword = {query}
html = urllib.request.urlopen("https://www.youtube.com/@NCIgov/search?query=cancer")
html2 = urllib.request.urlopen("https://www.youtube.com/@CancerCenter/search?query=cancer")
html3 = urllib.request.urlopen("https://www.youtube.com/@NorthwesternMedicine/search?query=cancer")
html4 = urllib.request.urlopen("https://www.youtube.com/@TEDEd/search?query=cancer")
html5 = urllib.request.urlopen("https://www.youtube.com/@CancerResearchUK/search?query=cancer")
video_ids = re.findall(r"watch\?v=(\S{11})", html.read().decode())
video_ids2 = re.findall(r"watch\?v=(\S{11})", html2.read().decode())
video_ids3 = re.findall(r"watch\?v=(\S{11})", html3.read().decode())
video_ids4 = re.findall(r"watch\?v=(\S{11})", html4.read().decode())
video_ids5 = re.findall(r"watch\?v=(\S{11})", html5.read().decode())
for i in video_ids2:
video_ids.append(i)
for i in video_ids3:
video_ids.append(i)
for i in video_ids4:
video_ids.append(i)
for i in video_ids5:
video_ids.append(i)
random.shuffle(video_ids)
c1, c2, c3 = st.columns(3)
with c1:
st.video("https://www.youtube.com/watch?v=" + video_ids[0])
with c2:
st.video("https://www.youtube.com/watch?v=" + video_ids[1])
with c3:
st.video("https://www.youtube.com/watch?v=" + video_ids[2])
st.markdown("---")
# Add a section header for useful resources
st.header("Learn More About Word2Vec the algorithm behind OncoDigger")
# Add links to videos and webpages
# Add links to videos and webpages
st.markdown("""
Here are some useful resources to help you learn more about Word2Vec:
1. [Word2Vec Tutorial - The Skip-Gram Model](http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/) - A blog post by Chris McCormick providing a detailed explanation of the skip-gram model used in Word2Vec.
2. [Word2Vec Tutorial Part 2 - Negative Sampling](http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/) - A follow-up blog post by Chris McCormick discussing negative sampling in Word2Vec.
3. [Efficient Estimation of Word Representations in Vector Space](https://arxiv.org/pdf/1301.3781.pdf) - The original research paper by Mikolov et al. that introduced the Word2Vec algorithm.
4. [Word2Vec Tutorial: Vector Representation of Words](https://www.youtube.com/watch?v=64qSgA66P-8) - A YouTube video by Sentdex explaining the Word2Vec algorithm and its implementation in Python.
5. [Word2Vec: How to Implement Word2Vec in Python](https://www.youtube.com/watch?v=ISPId9Lhc1g&t=6s) - A YouTube video by Data Talks demonstrating how to implement Word2Vec in Python using the Gensim library.
6. [Cosine Similarity Calculator](https://www.omnicalculator.com/math/cosine-similarity) - A calculator for computing cosine similarity, a common metric used in measuring similarity between vectors.
""")
# else:
# st.error("The password you entered is incorrect.")
|