Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -67,18 +67,18 @@ st.markdown("""
|
|
67 |
st.header(":red[*O*]nco:red[*D*]igger")
|
68 |
|
69 |
st.subheader(
|
70 |
-
"
|
71 |
-
"by Machine Learning and Natural Language Processing
|
72 |
|
73 |
|
74 |
def custom_subheader(text, identifier, font_size):
|
75 |
st.markdown(f"<h3 id='{identifier}' style='font-size: {font_size}px;'>{text}</h3>", unsafe_allow_html=True)
|
76 |
|
77 |
|
78 |
-
custom_subheader("To begin, simply select a corpus from the left sidebar and enter a keyword "
|
79 |
"you wish to explore within the corpus. OncoDigger will determine the top words, "
|
80 |
"genes, drugs, phytochemicals, and compounds that are contextually and semantically related "
|
81 |
-
"to your input. Dive in and enjoy the exploration!",
|
82 |
"unique-id", 18)
|
83 |
|
84 |
st.markdown("---")
|
@@ -117,10 +117,6 @@ if opt == "Lung Cancer corpus":
|
|
117 |
model_used = ("lung_cancer_pubmed_model")
|
118 |
num_abstracts = 143886
|
119 |
database_name = "Lung_cancer"
|
120 |
-
if opt == "Breast Cancer corpus":
|
121 |
-
model_used = ("pubmed_model_breast_cancer2")
|
122 |
-
num_abstracts = 204381
|
123 |
-
database_name = "Breast_cancer"
|
124 |
if opt == "Colorectal Cancer corpus":
|
125 |
model_used = ("colorectal_cancer_pubmed_model")
|
126 |
num_abstracts = 140000
|
@@ -164,6 +160,11 @@ if query:
|
|
164 |
# print(model.wv.similar_by_word('bfgf', topn=50, restrict_vocab=None))
|
165 |
df = pd.DataFrame(X)
|
166 |
|
|
|
|
|
|
|
|
|
|
|
167 |
def get_compound_ids(compound_names):
|
168 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
169 |
compound_ids = list(executor.map(get_compound_id, compound_names))
|
|
|
67 |
st.header(":red[*O*]nco:red[*D*]igger")
|
68 |
|
69 |
st.subheader(
|
70 |
+
"A web app designed to explore massive amounts of :red[*PubMed abstracts*] for a deeper understanding of your research. Results are driven "
|
71 |
+
"by Machine Learning and Natural Language Processing algorithms, which allow you to scan and mine information from hundreds of thousands of abstracts in seconds.")
|
72 |
|
73 |
|
74 |
def custom_subheader(text, identifier, font_size):
|
75 |
st.markdown(f"<h3 id='{identifier}' style='font-size: {font_size}px;'>{text}</h3>", unsafe_allow_html=True)
|
76 |
|
77 |
|
78 |
+
custom_subheader("To begin, simply select a cancer corpus from the left sidebar and enter a keyword "
|
79 |
"you wish to explore within the corpus. OncoDigger will determine the top words, "
|
80 |
"genes, drugs, phytochemicals, and compounds that are contextually and semantically related "
|
81 |
+
"to your input, both directly and indirectly. Dive in and enjoy the exploration!",
|
82 |
"unique-id", 18)
|
83 |
|
84 |
st.markdown("---")
|
|
|
117 |
model_used = ("lung_cancer_pubmed_model")
|
118 |
num_abstracts = 143886
|
119 |
database_name = "Lung_cancer"
|
|
|
|
|
|
|
|
|
120 |
if opt == "Colorectal Cancer corpus":
|
121 |
model_used = ("colorectal_cancer_pubmed_model")
|
122 |
num_abstracts = 140000
|
|
|
160 |
# print(model.wv.similar_by_word('bfgf', topn=50, restrict_vocab=None))
|
161 |
df = pd.DataFrame(X)
|
162 |
|
163 |
+
if 'melanin' in model.wv.key_to_index:
|
164 |
+
print("The term 'melanin' is present in the model.")
|
165 |
+
else:
|
166 |
+
print("The term 'melanin' is not present in the model.")
|
167 |
+
|
168 |
def get_compound_ids(compound_names):
|
169 |
with concurrent.futures.ThreadPoolExecutor() as executor:
|
170 |
compound_ids = list(executor.map(get_compound_id, compound_names))
|