jfataphd commited on
Commit
4b2cc15
1 Parent(s): 1699569

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -18
app.py CHANGED
@@ -36,36 +36,62 @@ if query:
36
  print()
37
  print("Similarity to " + str(query))
38
  pd.set_option('display.max_rows', None)
39
- print(table.head(100))
40
- table.head(10).to_csv("clotting_sim1.csv", index=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
  st.header(f"Similar Words to {query}")
42
  st.write(table.head(50))
43
  #
 
44
  print()
45
  print("Human genes similar to " + str(query))
46
  df1 = table
47
- df2 = pd.read_csv('Human Genes.csv')
48
  m = df1.Word.isin(df2.symbol)
49
  df1 = df1[m]
50
  df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
  print(df1.head(10))
 
 
52
  print()
53
- df1.head(10).to_csv("clotting_sim2.csv", index=True, header=False)
54
- time.sleep(2)
55
  st.header(f"Similar Genes to {query}")
56
- st.write(table.head(50))
57
-
58
-
59
- # findRelationships(query, df)
60
-
61
-
62
-
63
-
64
-
65
 
 
66
 
67
- # model = gensim.models.KeyedVectors.load_word2vec_format('pubmed_model_clotting', binary=True)
68
- # similar_words = model.most_similar(word)
69
- # output = json.dumps({"word": word, "similar_words": similar_words})
70
- # st.write(output)
71
 
 
 
36
  print()
37
  print("Similarity to " + str(query))
38
  pd.set_option('display.max_rows', None)
39
+
40
+ csv = table.head(50).to_csv(index=False).encode('utf-8')
41
+ st.download_button(
42
+ label=f"Download words similar to {query} in .csv format",
43
+ data=csv,
44
+ file_name='clotting_sim1.csv',
45
+ mime='text/csv'
46
+ )
47
+
48
+ json = table.head(50).to_json(index=True).encode('utf-8')
49
+ st.download_button(
50
+ label=f"Download words similar to {query} in .js format",
51
+ data=json,
52
+ file_name='clotting_sim1.js',
53
+ mime='json'
54
+ )
55
+
56
+ print(table.head(10))
57
+ table.head(50).to_csv("clotting_sim1.csv", index=True)
58
+ table.head(50).to_json("clotting_sim1.js", index=True)
59
  st.header(f"Similar Words to {query}")
60
  st.write(table.head(50))
61
  #
62
+
63
  print()
64
  print("Human genes similar to " + str(query))
65
  df1 = table
66
+ df2 = pd.read_csv('Human_Genes.csv')
67
  m = df1.Word.isin(df2.symbol)
68
  df1 = df1[m]
69
  df1.rename(columns={'Word': 'Human Gene'}, inplace=True)
70
+
71
+ csv2 = df1.head(50).to_csv(index=False).encode('utf-8')
72
+ st.download_button(
73
+ label=f"Download genes similar to {query} in .csv format",
74
+ data=csv2,
75
+ file_name='clotting_sim2.csv',
76
+ mime='text/csv'
77
+ )
78
+
79
+ json2 = df1.head(50).to_json(index=True).encode('utf-8')
80
+ st.download_button(
81
+ label=f"Download words similar to {query} in .js format",
82
+ data=json2,
83
+ file_name='clotting_sim1.js',
84
+ mime='json'
85
+ )
86
  print(df1.head(10))
87
+ df1.head(50).to_csv("clotting_sim2.csv", index=True)
88
+ df1.head(50).to_json("clotting_sim2.js", index=True)
89
  print()
 
 
90
  st.header(f"Similar Genes to {query}")
91
+ st.write(df1.head(50))
 
 
 
 
 
 
 
 
92
 
93
+ from datasets import load_dataset
94
 
95
+ test_dataset = load_dataset("json", data_files="clotting_sim1.js", split="train")
 
 
 
96
 
97
+ test_dataset.save_to_disk("sim1.hf")