jfataphd commited on
Commit
e36ad26
·
1 Parent(s): 7031c08

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -14
app.py CHANGED
@@ -13,10 +13,10 @@ import urllib.request
13
  import random
14
  import plotly.express as px
15
 
16
- st.set_page_config(page_title="Abstractalytics", page_icon=":microscope:", layout="wide", # centered
17
  initial_sidebar_state="auto",
18
- menu_items={'About': "Abstractalytics is a Natural Language Processing (NLP) that harnesses Word2Vec to mine"
19
- " insight from pubmed abstracts. Created by Jimmie E. Fata, PhD"})
20
 
21
  # Define the HTML and CSS styles
22
  st.markdown("""
@@ -41,25 +41,21 @@ st.markdown("""
41
  </style>
42
  """, unsafe_allow_html=True)
43
 
44
- st.header(":red[*Abstractalytics*]")
45
 
46
  st.subheader(
47
  "*A web app designed to explore :red[*PubMed abstracts*] for deeper understanding and fresh insights, driven "
48
- "by Natural Language Processing (NLP) techniques.*")
49
 
50
 
51
  def custom_subheader(text, identifier, font_size):
52
  st.markdown(f"<h3 id='{identifier}' style='font-size: {font_size}px;'>{text}</h3>", unsafe_allow_html=True)
53
 
54
 
55
- custom_subheader("Welcome to our innovative web2vec app designed to unlock the wealth of knowledge and insights hidden "
56
- "within PubMed abstracts! To begin, simply select a corpus that interests you. Next, enter a single keyword "
57
- "you wish to explore within the corpus. Abstractalytics powerful Natural Language "
58
- "Processing (NLP) algorithms will analyze the chosen corpus and present you with a list of top words, "
59
  "genes, drugs, phytochemicals, and compounds that are contextually and semantically related "
60
- "to your input. This advanced text-mining technique enables you to explore and understand complex "
61
- "relationships, uncovering new discoveries and connections in your field of research across a massive "
62
- "amount of abstracts. Dive in and enjoy the exploration! More oncology-related corpora comming soon.",
63
  "unique-id", 18)
64
 
65
  st.markdown("---")
@@ -79,7 +75,8 @@ st.markdown("---")
79
  #
80
  # # If the password is correct, show the app content
81
  # if authenticate(password):
82
- opt = st.sidebar.radio("Select a PubMed Corpus", options=('Breast Cancer corpus', 'Lung Cancer corpus', 'Prostate Cancer corpus'))
 
83
  # if opt == "Clotting corpus":
84
  # model_used = ("pubmed_model_clotting")
85
  # num_abstracts = 45493
@@ -100,9 +97,13 @@ if opt == "Breast Cancer corpus":
100
  model_used = ("pubmed_model_breast_cancer2")
101
  num_abstracts = 204381
102
  database_name = "Breast_cancer"
 
 
 
 
103
  if opt == "Prostate Cancer corpus":
104
  model_used = ("prostate_cancer_pubmed_model")
105
- num_abstracts = 89000
106
  database_name = "Prostate_cancer"
107
 
108
  st.header(f":blue[{database_name} Pubmed corpus.]")
 
13
  import random
14
  import plotly.express as px
15
 
16
+ st.set_page_config(page_title="OncoDigger", page_icon=":microscope:", layout="wide", # centered
17
  initial_sidebar_state="auto",
18
+ menu_items={'About': "OncoDigger is a Natural Language Processing (NLP) that harnesses Word2Vec to mine"
19
+ " insight from pubmed abstracts. Created by Jimmie E. Fata, PhD, fata4science@gmail.com"})
20
 
21
  # Define the HTML and CSS styles
22
  st.markdown("""
 
41
  </style>
42
  """, unsafe_allow_html=True)
43
 
44
+ st.header(":red[*O*]nco:red[*D*]igger")
45
 
46
  st.subheader(
47
  "*A web app designed to explore :red[*PubMed abstracts*] for deeper understanding and fresh insights, driven "
48
+ "by Machine Learning and Natural Language Processing (NLP) algorithms.*")
49
 
50
 
51
  def custom_subheader(text, identifier, font_size):
52
  st.markdown(f"<h3 id='{identifier}' style='font-size: {font_size}px;'>{text}</h3>", unsafe_allow_html=True)
53
 
54
 
55
+ custom_subheader("To begin, simply select a corpus from the left sidebar and enter a keyword "
56
+ "you wish to explore within the corpus. OncoDigger will determine the top words, "
 
 
57
  "genes, drugs, phytochemicals, and compounds that are contextually and semantically related "
58
+ "to your input. Dive in and enjoy the exploration!",
 
 
59
  "unique-id", 18)
60
 
61
  st.markdown("---")
 
75
  #
76
  # # If the password is correct, show the app content
77
  # if authenticate(password):
78
+ opt = st.sidebar.radio("Select a PubMed Corpus", options=('Breast Cancer corpus', 'Lung Cancer corpus',
79
+ 'Colorectal Cancer corpus', 'Prostate Cancer corpus'))
80
  # if opt == "Clotting corpus":
81
  # model_used = ("pubmed_model_clotting")
82
  # num_abstracts = 45493
 
97
  model_used = ("pubmed_model_breast_cancer2")
98
  num_abstracts = 204381
99
  database_name = "Breast_cancer"
100
+ if opt == "Colorectal Cancer corpus":
101
+ model_used = ("colorectal_cancer_pubmed_model")
102
+ num_abstracts = 140000
103
+ database_name = "Colorectal_cancer"
104
  if opt == "Prostate Cancer corpus":
105
  model_used = ("prostate_cancer_pubmed_model")
106
+ num_abstracts = 89782
107
  database_name = "Prostate_cancer"
108
 
109
  st.header(f":blue[{database_name} Pubmed corpus.]")