Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,26 +6,35 @@ import pandas as pd
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import squarify
|
8 |
import numpy as np
|
|
|
|
|
9 |
|
10 |
st.set_page_config(
|
11 |
page_title="FATA4 Science",
|
12 |
page_icon=":microscope:",
|
13 |
layout="wide",
|
14 |
-
initial_sidebar_state="
|
15 |
menu_items={
|
16 |
'About': "FATA4 Science is a Natural Language Processing (NLP) that ...."
|
17 |
}
|
18 |
)
|
19 |
|
20 |
# Define the HTML and CSS styles
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
st.markdown("""
|
22 |
<style>
|
23 |
body {
|
24 |
-
background-color: #
|
25 |
# color: #ffffff;
|
26 |
}
|
27 |
.stApp {
|
28 |
-
background-color: #
|
29 |
# color: #ffffff;
|
30 |
}
|
31 |
</style>
|
@@ -46,14 +55,19 @@ st.markdown("---")
|
|
46 |
st.subheader("Uncovering knowledge through Natural Language Processing (NLP)")
|
47 |
|
48 |
st.header(f"{database_name} Pubmed corpus.")
|
49 |
-
text_input_value = st.text_input(f"Enter one term to search within the {database_name} corpus"
|
50 |
query = text_input_value
|
51 |
query = query.lower()
|
|
|
|
|
|
|
|
|
52 |
# query = input ("Enter your keyword(s):")
|
53 |
if query:
|
54 |
bar = st.progress(0)
|
55 |
time.sleep(.2)
|
56 |
st.caption(f":LightSkyBlue[searching {num_abstracts} {database_name} PubMed abstracts] covering 1990-2022")
|
|
|
57 |
for i in range(10):
|
58 |
bar.progress((i + 1) * 10)
|
59 |
time.sleep(.1)
|
@@ -98,7 +112,7 @@ if query:
|
|
98 |
# # plot the treemap using matplotlib
|
99 |
plt.axis('off')
|
100 |
fig = plt.gcf()
|
101 |
-
fig.patch.set_facecolor('#
|
102 |
# # display the treemap in Streamlit
|
103 |
st.pyplot(fig)
|
104 |
plt.clf()
|
@@ -138,7 +152,7 @@ if query:
|
|
138 |
|
139 |
plt.axis('off')
|
140 |
fig2 = plt.gcf()
|
141 |
-
fig2.patch.set_facecolor('#
|
142 |
# plt.show()
|
143 |
#
|
144 |
# # display the treemap in Streamlit
|
@@ -148,18 +162,18 @@ if query:
|
|
148 |
st.download_button(label="download top 100 genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
149 |
mime='text/csv')
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
)
|
157 |
|
158 |
-
|
159 |
-
|
|
|
160 |
|
161 |
-
_, container, _ = st.columns([side, width, side])
|
162 |
-
container.video(data=VIDEO_DATA)
|
163 |
|
164 |
|
165 |
|
|
|
6 |
import matplotlib.pyplot as plt
|
7 |
import squarify
|
8 |
import numpy as np
|
9 |
+
import re
|
10 |
+
import urllib.request
|
11 |
|
12 |
st.set_page_config(
|
13 |
page_title="FATA4 Science",
|
14 |
page_icon=":microscope:",
|
15 |
layout="wide",
|
16 |
+
initial_sidebar_state="auto",
|
17 |
menu_items={
|
18 |
'About': "FATA4 Science is a Natural Language Processing (NLP) that ...."
|
19 |
}
|
20 |
)
|
21 |
|
22 |
# Define the HTML and CSS styles
|
23 |
+
st.markdown("""
|
24 |
+
<style>
|
25 |
+
[data-testid=stSidebar] {
|
26 |
+
background-color: #99CCFF;
|
27 |
+
}
|
28 |
+
</style>
|
29 |
+
""", unsafe_allow_html=True)
|
30 |
st.markdown("""
|
31 |
<style>
|
32 |
body {
|
33 |
+
background-color: #CCFFFF;
|
34 |
# color: #ffffff;
|
35 |
}
|
36 |
.stApp {
|
37 |
+
background-color: #CCFFFF;
|
38 |
# color: #ffffff;
|
39 |
}
|
40 |
</style>
|
|
|
55 |
st.subheader("Uncovering knowledge through Natural Language Processing (NLP)")
|
56 |
|
57 |
st.header(f"{database_name} Pubmed corpus.")
|
58 |
+
text_input_value = st.text_input(f"Enter one term to search within the {database_name} corpus")
|
59 |
query = text_input_value
|
60 |
query = query.lower()
|
61 |
+
query = re.sub("[,.?!&*;:]", "", query)
|
62 |
+
matches = [" "]
|
63 |
+
if any([x in query for x in matches]):
|
64 |
+
st.write("Please only enter one term or a term without spaces")
|
65 |
# query = input ("Enter your keyword(s):")
|
66 |
if query:
|
67 |
bar = st.progress(0)
|
68 |
time.sleep(.2)
|
69 |
st.caption(f":LightSkyBlue[searching {num_abstracts} {database_name} PubMed abstracts] covering 1990-2022")
|
70 |
+
|
71 |
for i in range(10):
|
72 |
bar.progress((i + 1) * 10)
|
73 |
time.sleep(.1)
|
|
|
112 |
# # plot the treemap using matplotlib
|
113 |
plt.axis('off')
|
114 |
fig = plt.gcf()
|
115 |
+
fig.patch.set_facecolor('#CCFFFF')
|
116 |
# # display the treemap in Streamlit
|
117 |
st.pyplot(fig)
|
118 |
plt.clf()
|
|
|
152 |
|
153 |
plt.axis('off')
|
154 |
fig2 = plt.gcf()
|
155 |
+
fig2.patch.set_facecolor('#CCFFFF')
|
156 |
# plt.show()
|
157 |
#
|
158 |
# # display the treemap in Streamlit
|
|
|
162 |
st.download_button(label="download top 100 genes (csv)", data=csv, file_name=f'{database_name}_genes.csv',
|
163 |
mime='text/csv')
|
164 |
|
165 |
+
if query:
|
166 |
+
search_keyword = {query}
|
167 |
+
html = urllib.request.urlopen(f"https://www.youtube.com/results?search_query={database_name}")
|
168 |
+
video_ids = re.findall(r"watch\?v=(\S{11})", html.read().decode())
|
169 |
+
# st.video("https://www.youtube.com/watch?v=" + video_ids[0])
|
|
|
170 |
|
171 |
+
VIDEO_DATA = "https://www.youtube.com/watch?v=" + video_ids[0]
|
172 |
+
width = 80
|
173 |
+
side = 10
|
174 |
|
175 |
+
_, container, _ = st.columns([side, width, side])
|
176 |
+
container.video(data=VIDEO_DATA)
|
177 |
|
178 |
|
179 |
|