Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -51,11 +51,12 @@ if opt == "Neuroblastoma corpus":
|
|
51 |
num_abstracts = 29032
|
52 |
database_name = "Neuroblastoma"
|
53 |
|
54 |
-
st.
|
|
|
|
|
55 |
st.markdown("---")
|
56 |
-
st.subheader("Uncovering knowledge through Natural Language Processing (NLP)")
|
57 |
|
58 |
-
st.header(f"{database_name} Pubmed corpus.")
|
59 |
text_input_value = st.text_input(f"Enter one term to search within the {database_name} corpus")
|
60 |
query = text_input_value
|
61 |
query = query.lower()
|
@@ -67,7 +68,7 @@ if any([x in query for x in matches]):
|
|
67 |
if query:
|
68 |
bar = st.progress(0)
|
69 |
time.sleep(.05)
|
70 |
-
st.caption(f"
|
71 |
|
72 |
for i in range(10):
|
73 |
bar.progress((i + 1) * 10)
|
@@ -83,7 +84,7 @@ if query:
|
|
83 |
except:
|
84 |
st.error("Term occurrence is too low - please try another term")
|
85 |
st.stop()
|
86 |
-
|
87 |
# def findRelationships(query, df):
|
88 |
table = model.wv.most_similar_cosmul(query, topn=10000)
|
89 |
table = (pd.DataFrame(table))
|
|
|
51 |
num_abstracts = 29032
|
52 |
database_name = "Neuroblastoma"
|
53 |
|
54 |
+
st.header(":red[Fast Acting Text Analysis (FATA) 4 Science]")
|
55 |
+
|
56 |
+
st.subheader(":red[Uncovering knowledge through Natural Language Processing (NLP)]")
|
57 |
st.markdown("---")
|
|
|
58 |
|
59 |
+
st.header(f":blue[{database_name} Pubmed corpus.]")
|
60 |
text_input_value = st.text_input(f"Enter one term to search within the {database_name} corpus")
|
61 |
query = text_input_value
|
62 |
query = query.lower()
|
|
|
68 |
if query:
|
69 |
bar = st.progress(0)
|
70 |
time.sleep(.05)
|
71 |
+
st.caption(f"Searching {num_abstracts} {database_name} PubMed abstracts covering 1990-2022")
|
72 |
|
73 |
for i in range(10):
|
74 |
bar.progress((i + 1) * 10)
|
|
|
84 |
except:
|
85 |
st.error("Term occurrence is too low - please try another term")
|
86 |
st.stop()
|
87 |
+
st.markdown("---")
|
88 |
# def findRelationships(query, df):
|
89 |
table = model.wv.most_similar_cosmul(query, topn=10000)
|
90 |
table = (pd.DataFrame(table))
|