new

Get trending papers in your email inbox!

Subscribe

byAK and the research community

May 6

Learning a Consensus Sub-Network with Polarization Regularization and One Pass Training

The subject of green AI has been gaining attention within the deep learning community given the recent trend of ever larger and more complex neural network models. Existing solutions for reducing the computational load of training at inference time usually involve pruning the network parameters. Pruning schemes often create extra overhead either by iterative training and fine-tuning for static pruning or repeated computation of a dynamic pruning graph. We propose a new parameter pruning strategy for learning a lighter-weight sub-network that minimizes the energy cost while maintaining comparable performance to the fully parameterised network on given downstream tasks. Our proposed pruning scheme is green-oriented, as it only requires a one-off training to discover the optimal static sub-networks by dynamic pruning methods. The pruning scheme consists of a binary gating module and a novel loss function to uncover sub-networks with user-defined sparsity. Our method enables pruning and training simultaneously, which saves energy in both the training and inference phases and avoids extra computational overhead from gating modules at inference time. Our results on CIFAR-10 and CIFAR-100 suggest that our scheme can remove 50% of connections in deep networks with less than 1% reduction in classification accuracy. Compared to other related pruning methods, our method demonstrates a lower drop in accuracy for equivalent reductions in computational cost.

When Layers Play the Lottery, all Tickets Win at Initialization

Pruning is a standard technique for reducing the computational cost of deep networks. Many advances in pruning leverage concepts from the Lottery Ticket Hypothesis (LTH). LTH reveals that inside a trained dense network exists sparse subnetworks (tickets) able to achieve similar accuracy (i.e., win the lottery - winning tickets). Pruning at initialization focuses on finding winning tickets without training a dense network. Studies on these concepts share the trend that subnetworks come from weight or filter pruning. In this work, we investigate LTH and pruning at initialization from the lens of layer pruning. First, we confirm the existence of winning tickets when the pruning process removes layers. Leveraged by this observation, we propose to discover these winning tickets at initialization, eliminating the requirement of heavy computational resources for training the initial (over-parameterized) dense network. Extensive experiments show that our winning tickets notably speed up the training phase and reduce up to 51% of carbon emission, an important step towards democratization and green Artificial Intelligence. Beyond computational benefits, our winning tickets exhibit robustness against adversarial and out-of-distribution examples. Finally, we show that our subnetworks easily win the lottery at initialization while tickets from filter removal (the standard structured LTH) hardly become winning tickets.

Is Complexity Required for Neural Network Pruning? A Case Study on Global Magnitude Pruning

Pruning neural networks has become popular in the last decade when it was shown that a large number of weights can be safely removed from modern neural networks without compromising accuracy. Numerous pruning methods have been proposed since then, each claiming to be better than the previous. Many state-of-the-art (SOTA) techniques today rely on complex pruning methodologies utilizing importance scores, getting feedback through back-propagation or having heuristics-based pruning rules amongst others. In this work, we question whether this pattern of introducing complexity is really necessary to achieve better pruning results. We benchmark these SOTA techniques against a naive pruning baseline, namely, Global Magnitude Pruning (Global MP). Global MP ranks weights in order of their magnitudes and prunes the smallest ones. Hence, in its vanilla form, it is one of the simplest pruning techniques. Surprisingly, we find that vanilla Global MP outperforms all the other SOTA techniques and achieves a new SOTA result. It also achieves promising performance on FLOPs sparsification, which we find is enhanced, when pruning is conducted in a gradual fashion. We also find that Global MP is generalizable across tasks, datasets, and models with superior performance. Moreover, a common issue that many pruning algorithms run into at high sparsity rates, namely, layer-collapse, can be easily fixed in Global MP by setting a minimum threshold of weights to be retained in each layer. Lastly, unlike many other SOTA techniques, Global MP does not require any additional algorithm specific hyper-parameters and is very straightforward to tune and implement. We showcase our findings on various models (WRN-28-8, ResNet-32, ResNet-50, MobileNet-V1 and FastGRNN) and multiple datasets (CIFAR-10, ImageNet and HAR-2). Code is available at https://github.com/manasgupta-1/GlobalMP.

Lottery Jackpots Exist in Pre-trained Models

Network pruning is an effective approach to reduce network complexity with acceptable performance compromise. Existing studies achieve the sparsity of neural networks via time-consuming weight training or complex searching on networks with expanded width, which greatly limits the applications of network pruning. In this paper, we show that high-performing and sparse sub-networks without the involvement of weight training, termed "lottery jackpots", exist in pre-trained models with unexpanded width. Furthermore, we improve the efficiency for searching lottery jackpots from two perspectives. Firstly, we observe that the sparse masks derived from many existing pruning criteria have a high overlap with the searched mask of our lottery jackpot, among which, the magnitude-based pruning results in the most similar mask with ours. Consequently, our searched lottery jackpot removes 90% weights in ResNet-50, while it easily obtains more than 70% top-1 accuracy using only 5 searching epochs on ImageNet. In compliance with this insight, we initialize our sparse mask using the magnitude-based pruning, resulting in at least 3x cost reduction on the lottery jackpot searching while achieving comparable or even better performance. Secondly, we conduct an in-depth analysis of the searching process for lottery jackpots. Our theoretical result suggests that the decrease in training loss during weight searching can be disturbed by the dependency between weights in modern networks. To mitigate this, we propose a novel short restriction method to restrict change of masks that may have potential negative impacts on the training loss. Our code is available at https://github.com/zyxxmu/lottery-jackpots.

Efficient Joint Optimization of Layer-Adaptive Weight Pruning in Deep Neural Networks

In this paper, we propose a novel layer-adaptive weight-pruning approach for Deep Neural Networks (DNNs) that addresses the challenge of optimizing the output distortion minimization while adhering to a target pruning ratio constraint. Our approach takes into account the collective influence of all layers to design a layer-adaptive pruning scheme. We discover and utilize a very important additivity property of output distortion caused by pruning weights on multiple layers. This property enables us to formulate the pruning as a combinatorial optimization problem and efficiently solve it through dynamic programming. By decomposing the problem into sub-problems, we achieve linear time complexity, making our optimization algorithm fast and feasible to run on CPUs. Our extensive experiments demonstrate the superiority of our approach over existing methods on the ImageNet and CIFAR-10 datasets. On CIFAR-10, our method achieves remarkable improvements, outperforming others by up to 1.0% for ResNet-32, 0.5% for VGG-16, and 0.7% for DenseNet-121 in terms of top-1 accuracy. On ImageNet, we achieve up to 4.7% and 4.6% higher top-1 accuracy compared to other methods for VGG-16 and ResNet-50, respectively. These results highlight the effectiveness and practicality of our approach for enhancing DNN performance through layer-adaptive weight pruning. Code will be available on https://github.com/Akimoto-Cris/RD_VIT_PRUNE.

Beyond Size: How Gradients Shape Pruning Decisions in Large Language Models

Large Language Models (LLMs) with a billion or more parameters are prime targets for network pruning, which aims to reduce a portion of the network weights without compromising performance. Prior approaches such as Weights Magnitude, SparseGPT, and Wanda, either concentrated solely on weights or integrated weights with activations for sparsity. However, they overlooked the informative gradients derived from pretrained large language models. In this paper, we present a novel sparsity-centric pruning method for pretrained LLMs, termed Gradient-based Language Model Pruner (GBLM-Pruner). GBLM-Pruner leverages the first-order term of the Taylor expansion, operating in a training-free manner by harnessing properly normalized gradients from a few calibration samples to determine the importance pruning score, and substantially outperforms competitive counterparts like SparseGPT and Wanda in multiple benchmarks. Intriguing, after incorporating gradients, the unstructured pruning method tends to reveal some structural patterns post-pruning, which mirrors the geometric interdependence inherent in the LLMs' parameter structure. Additionally, GBLM-Pruner functions without any subsequent retraining or weight updates to maintain its simplicity as other counterparts. Extensive evaluations on LLaMA-1 and LLaMA-2 across various language benchmarks and perplexity show that GBLM-Pruner surpasses magnitude pruning, Wanda (weights+activations) and SparseGPT (weights+activations+weight update) by significant margins. Our code and models are available at https://github.com/RocktimJyotiDas/GBLM-Pruner.

Advancing Model Pruning via Bi-level Optimization

The deployment constraints in practical applications necessitate the pruning of large-scale deep learning models, i.e., promoting their weight sparsity. As illustrated by the Lottery Ticket Hypothesis (LTH), pruning also has the potential of improving their generalization ability. At the core of LTH, iterative magnitude pruning (IMP) is the predominant pruning method to successfully find 'winning tickets'. Yet, the computation cost of IMP grows prohibitively as the targeted pruning ratio increases. To reduce the computation overhead, various efficient 'one-shot' pruning methods have been developed, but these schemes are usually unable to find winning tickets as good as IMP. This raises the question of how to close the gap between pruning accuracy and pruning efficiency? To tackle it, we pursue the algorithmic advancement of model pruning. Specifically, we formulate the pruning problem from a fresh and novel viewpoint, bi-level optimization (BLO). We show that the BLO interpretation provides a technically-grounded optimization base for an efficient implementation of the pruning-retraining learning paradigm used in IMP. We also show that the proposed bi-level optimization-oriented pruning method (termed BiP) is a special class of BLO problems with a bi-linear problem structure. By leveraging such bi-linearity, we theoretically show that BiP can be solved as easily as first-order optimization, thus inheriting the computation efficiency. Through extensive experiments on both structured and unstructured pruning with 5 model architectures and 4 data sets, we demonstrate that BiP can find better winning tickets than IMP in most cases, and is computationally as efficient as the one-shot pruning schemes, demonstrating 2-7 times speedup over IMP for the same level of model accuracy and sparsity.

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks

Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing storage requirements and improving computational performance of inference without compromising accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the start, which would similarly improve training performance. We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense, randomly-initialized, feed-forward networks contain subnetworks ("winning tickets") that - when trained in isolation - reach test accuracy comparable to the original network in a similar number of iterations. The winning tickets we find have won the initialization lottery: their connections have initial weights that make training particularly effective. We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy.

A Survey on Deep Neural Network Pruning-Taxonomy, Comparison, Analysis, and Recommendations

Modern deep neural networks, particularly recent large language models, come with massive model sizes that require significant computational and storage resources. To enable the deployment of modern models on resource-constrained environments and accelerate inference time, researchers have increasingly explored pruning techniques as a popular research direction in neural network compression. However, there is a dearth of up-to-date comprehensive review papers on pruning. To address this issue, in this survey, we provide a comprehensive review of existing research works on deep neural network pruning in a taxonomy of 1) universal/specific speedup, 2) when to prune, 3) how to prune, and 4) fusion of pruning and other compression techniques. We then provide a thorough comparative analysis of seven pairs of contrast settings for pruning (e.g., unstructured/structured) and explore emerging topics, including post-training pruning, different levels of supervision for pruning, and broader applications (e.g., adversarial robustness) to shed light on the commonalities and differences of existing methods and lay the foundation for further method development. To facilitate future research, we build a curated collection of datasets, networks, and evaluations on different applications. Finally, we provide some valuable recommendations on selecting pruning methods and prospect promising research directions. We build a repository at https://github.com/hrcheng1066/awesome-pruning.

Not All Prompts Are Made Equal: Prompt-based Pruning of Text-to-Image Diffusion Models

Text-to-image (T2I) diffusion models have demonstrated impressive image generation capabilities. Still, their computational intensity prohibits resource-constrained organizations from deploying T2I models after fine-tuning them on their internal target data. While pruning techniques offer a potential solution to reduce the computational burden of T2I models, static pruning methods use the same pruned model for all input prompts, overlooking the varying capacity requirements of different prompts. Dynamic pruning addresses this issue by utilizing a separate sub-network for each prompt, but it prevents batch parallelism on GPUs. To overcome these limitations, we introduce Adaptive Prompt-Tailored Pruning (APTP), a novel prompt-based pruning method designed for T2I diffusion models. Central to our approach is a prompt router model, which learns to determine the required capacity for an input text prompt and routes it to an architecture code, given a total desired compute budget for prompts. Each architecture code represents a specialized model tailored to the prompts assigned to it, and the number of codes is a hyperparameter. We train the prompt router and architecture codes using contrastive learning, ensuring that similar prompts are mapped to nearby codes. Further, we employ optimal transport to prevent the codes from collapsing into a single one. We demonstrate APTP's effectiveness by pruning Stable Diffusion (SD) V2.1 using CC3M and COCO as target datasets. APTP outperforms the single-model pruning baselines in terms of FID, CLIP, and CMMD scores. Our analysis of the clusters learned by APTP reveals they are semantically meaningful. We also show that APTP can automatically discover previously empirically found challenging prompts for SD, e.g., prompts for generating text images, assigning them to higher capacity codes.

Learning to Actively Learn: A Robust Approach

This work proposes a procedure for designing algorithms for specific adaptive data collection tasks like active learning and pure-exploration multi-armed bandits. Unlike the design of traditional adaptive algorithms that rely on concentration of measure and careful analysis to justify the correctness and sample complexity of the procedure, our adaptive algorithm is learned via adversarial training over equivalence classes of problems derived from information theoretic lower bounds. In particular, a single adaptive learning algorithm is learned that competes with the best adaptive algorithm learned for each equivalence class. Our procedure takes as input just the available queries, set of hypotheses, loss function, and total query budget. This is in contrast to existing meta-learning work that learns an adaptive algorithm relative to an explicit, user-defined subset or prior distribution over problems which can be challenging to define and be mismatched to the instance encountered at test time. This work is particularly focused on the regime when the total query budget is very small, such as a few dozen, which is much smaller than those budgets typically considered by theoretically derived algorithms. We perform synthetic experiments to justify the stability and effectiveness of the training procedure, and then evaluate the method on tasks derived from real data including a noisy 20 Questions game and a joke recommendation task.

Adapt-Pruner: Adaptive Structural Pruning for Efficient Small Language Model Training

Small language models (SLMs) have attracted considerable attention from both academia and industry due to their broad range of applications in edge devices. To obtain SLMs with strong performance, conventional approaches either pre-train the models from scratch, which incurs substantial computational costs, or compress/prune existing large language models (LLMs), which results in performance drops and falls short in comparison to pre-training. In this paper, we investigate the family of acceleration methods that involve both structured pruning and model training. We found 1) layer-wise adaptive pruning (Adapt-Pruner) is extremely effective in LLMs and yields significant improvements over existing pruning techniques, 2) adaptive pruning equipped with further training leads to models comparable to those pre-training from scratch, 3) incremental pruning brings non-trivial performance gain by interleaving pruning with training and only removing a small portion of neurons (sim5%) at a time. Experimental results on LLaMA-3.1-8B demonstrate that Adapt-Pruner outperforms conventional pruning methods, such as LLM-Pruner, FLAP, and SliceGPT, by an average of 1%-7% in accuracy on commonsense benchmarks. Additionally, Adapt-Pruner restores the performance of MobileLLM-125M to 600M on the MMLU benchmark with 200times fewer tokens via pruning from its larger counterparts, and discovers a new 1B model that surpasses LLaMA-3.2-1B in multiple benchmarks.

Toward Evaluative Thinking: Meta Policy Optimization with Evolving Reward Models

Reward-based alignment methods for large language models (LLMs) face two key limitations: vulnerability to reward hacking, where models exploit flaws in the reward signal; and reliance on brittle, labor-intensive prompt engineering when LLMs are used as reward models. We introduce Meta Policy Optimization (MPO), a framework that addresses these challenges by integrating a meta-reward model that dynamically refines the reward model's prompt throughout training. In MPO, the meta-reward model monitors the evolving training context and continuously adjusts the reward model's prompt to maintain high alignment, providing an adaptive reward signal that resists exploitation by the policy. This meta-learning approach promotes a more stable policy optimization, and greatly reduces the need for manual reward prompt design. It yields performance on par with or better than models guided by extensively hand-crafted reward prompts. Furthermore, we show that MPO maintains its effectiveness across diverse tasks, such as question answering and mathematical reasoning, without requiring specialized reward designs. Beyond standard RLAIF, MPO's meta-learning formulation is readily extensible to higher-level alignment frameworks. Overall, this method addresses theoretical and practical challenges in reward-based RL alignment for LLMs, paving the way for more robust and adaptable alignment strategies. The code and models will be publicly shared.

Distributed Pruning Towards Tiny Neural Networks in Federated Learning

Neural network pruning is an essential technique for reducing the size and complexity of deep neural networks, enabling large-scale models on devices with limited resources. However, existing pruning approaches heavily rely on training data for guiding the pruning strategies, making them ineffective for federated learning over distributed and confidential datasets. Additionally, the memory- and computation-intensive pruning process becomes infeasible for recourse-constrained devices in federated learning. To address these challenges, we propose FedTiny, a distributed pruning framework for federated learning that generates specialized tiny models for memory- and computing-constrained devices. We introduce two key modules in FedTiny to adaptively search coarse- and finer-pruned specialized models to fit deployment scenarios with sparse and cheap local computation. First, an adaptive batch normalization selection module is designed to mitigate biases in pruning caused by the heterogeneity of local data. Second, a lightweight progressive pruning module aims to finer prune the models under strict memory and computational budgets, allowing the pruning policy for each layer to be gradually determined rather than evaluating the overall model structure. The experimental results demonstrate the effectiveness of FedTiny, which outperforms state-of-the-art approaches, particularly when compressing deep models to extremely sparse tiny models. FedTiny achieves an accuracy improvement of 2.61% while significantly reducing the computational cost by 95.91% and the memory footprint by 94.01% compared to state-of-the-art methods.

Online Intrinsic Rewards for Decision Making Agents from Large Language Model Feedback

Automatically synthesizing dense rewards from natural language descriptions is a promising paradigm in reinforcement learning (RL), with applications to sparse reward problems, open-ended exploration, and hierarchical skill design. Recent works have made promising steps by exploiting the prior knowledge of large language models (LLMs). However, these approaches suffer from important limitations: they are either not scalable to problems requiring billions of environment samples, due to requiring LLM annotations for each observation, or they require a diverse offline dataset, which may not exist or be impossible to collect. In this work, we address these limitations through a combination of algorithmic and systems-level contributions. We propose \oni, a distributed architecture that simultaneously learns an RL policy and an intrinsic reward function using LLM feedback. Our approach annotates the agent's collected experience via an asynchronous LLM server, which is then distilled into an intrinsic reward model. We explore a range of algorithmic choices for reward modeling with varying complexity, including hashing, classification, and ranking models. By studying their relative tradeoffs, we shed light on questions regarding intrinsic reward design for sparse reward problems. Our approach achieves state-of-the-art performance across a range of challenging, sparse reward tasks from the NetHack Learning Environment in a simple unified process, solely using the agent's gathered experience, without requiring external datasets. We make our code available at https://github.com/facebookresearch/oni.

Efficient Maximum Fair Clique Search over Large Networks

Mining cohesive subgraphs in attributed graphs is an essential problem in the domain of graph data analysis. The integration of fairness considerations significantly fuels interest in models and algorithms for mining fairness-aware cohesive subgraphs. Notably, the relative fair clique emerges as a robust model, ensuring not only comprehensive attribute coverage but also greater flexibility in distributing attribute vertices. Motivated by the strength of this model, we for the first time pioneer an investigation into the identification of the maximum relative fair clique in large-scale graphs. We introduce a novel concept of colorful support, which serves as the foundation for two innovative graph reduction techniques. These techniques effectively narrow the graph's size by iteratively removing edges that do not belong to relative fair cliques. Furthermore, a series of upper bounds of the maximum relative fair clique size is proposed by incorporating consideration of vertex attributes and colors. The pruning techniques derived from these upper bounds can significantly trim unnecessary search space during the branch-and-bound procedure. Adding to this, we present a heuristic algorithm with a linear time complexity, employing both a degree-based greedy strategy and a colored degree-based greedy strategy to identify a larger relative fair clique. This heuristic algorithm can serve a dual purpose by aiding in branch pruning, thereby enhancing overall search efficiency. Extensive experiments conducted on six real-life datasets demonstrate the efficiency, scalability, and effectiveness of our algorithms.

Fluctuation-based Adaptive Structured Pruning for Large Language Models

Network Pruning is a promising way to address the huge computing resource demands of the deployment and inference of Large Language Models (LLMs). Retraining-free is important for LLMs' pruning methods. However, almost all of the existing retraining-free pruning approaches for LLMs focus on unstructured pruning, which requires specific hardware support for acceleration. In this paper, we propose a novel retraining-free structured pruning framework for LLMs, named FLAP (FLuctuation-based Adaptive Structured Pruning). It is hardware-friendly by effectively reducing storage and enhancing inference speed. For effective structured pruning of LLMs, we highlight three critical elements that demand the utmost attention: formulating structured importance metrics, adaptively searching the global compressed model, and implementing compensation mechanisms to mitigate performance loss. First, FLAP determines whether the output feature map is easily recoverable when a column of weight is removed, based on the fluctuation pruning metric. Then it standardizes the importance scores to adaptively determine the global compressed model structure. At last, FLAP adds additional bias terms to recover the output feature maps using the baseline values. We thoroughly evaluate our approach on a variety of language benchmarks. Without any retraining, our method significantly outperforms the state-of-the-art methods, including LLM-Pruner and the extension of Wanda in structured pruning. The code is released at https://github.com/CASIA-IVA-Lab/FLAP.

Pruning Deep Neural Networks from a Sparsity Perspective

In recent years, deep network pruning has attracted significant attention in order to enable the rapid deployment of AI into small devices with computation and memory constraints. Pruning is often achieved by dropping redundant weights, neurons, or layers of a deep network while attempting to retain a comparable test performance. Many deep pruning algorithms have been proposed with impressive empirical success. However, existing approaches lack a quantifiable measure to estimate the compressibility of a sub-network during each pruning iteration and thus may under-prune or over-prune the model. In this work, we propose PQ Index (PQI) to measure the potential compressibility of deep neural networks and use this to develop a Sparsity-informed Adaptive Pruning (SAP) algorithm. Our extensive experiments corroborate the hypothesis that for a generic pruning procedure, PQI decreases first when a large model is being effectively regularized and then increases when its compressibility reaches a limit that appears to correspond to the beginning of underfitting. Subsequently, PQI decreases again when the model collapse and significant deterioration in the performance of the model start to occur. Additionally, our experiments demonstrate that the proposed adaptive pruning algorithm with proper choice of hyper-parameters is superior to the iterative pruning algorithms such as the lottery ticket-based pruning methods, in terms of both compression efficiency and robustness.

Compresso: Structured Pruning with Collaborative Prompting Learns Compact Large Language Models

Despite the remarkable success of Large Language Models (LLMs), the massive size poses significant deployment challenges, particularly on resource-constrained hardware. While existing LLM compression methods focus on quantization, pruning remains relatively unexplored due to the high cost of training-based approaches and data collection challenges. One-shot pruning methods, although cost-effective and data-free, have become dominant in LLM pruning, but lead to performance decline under the structured pruning setting. In this work, we introduce a new paradigm for structurally pruning LLMs, called Compresso. Our approach, through the collaboration of the proposed resource-efficient pruning algorithm and the LLM itself, learns optimal pruning decisions during the training process. Compresso addresses the challenges of expensive training costs and data collection by incorporating Low-Rank Adaptation (LoRA) into the L_0 regularization during the instruction tuning process. Then, we further augment the pruning algorithm by introducing a collaborative prompt that fosters collaboration between the LLM and the pruning algorithm, significantly boosting the overall performance. To this end, Compresso prunes LLaMA-7B to 5.4B, maintaining original performance and even surpassing LLaMA-7B in reading comprehension by 2.62%. Extensive experiments demonstrate that Compresso significantly outperforms one-shot pruning baselines across various sparsity ratios, achieving up to 2.21%, 11.43%, 7.04%, and 4.81% higher scores on the commonsense reasoning, reading comprehension, MMLU, and BBH benchmarks, respectively.

Network Pruning via Transformable Architecture Search

Network pruning reduces the computation costs of an over-parameterized network without performance damage. Prevailing pruning algorithms pre-define the width and depth of the pruned networks, and then transfer parameters from the unpruned network to pruned networks. To break the structure limitation of the pruned networks, we propose to apply neural architecture search to search directly for a network with flexible channel and layer sizes. The number of the channels/layers is learned by minimizing the loss of the pruned networks. The feature map of the pruned network is an aggregation of K feature map fragments (generated by K networks of different sizes), which are sampled based on the probability distribution.The loss can be back-propagated not only to the network weights, but also to the parameterized distribution to explicitly tune the size of the channels/layers. Specifically, we apply channel-wise interpolation to keep the feature map with different channel sizes aligned in the aggregation procedure. The maximum probability for the size in each distribution serves as the width and depth of the pruned network, whose parameters are learned by knowledge transfer, e.g., knowledge distillation, from the original networks. Experiments on CIFAR-10, CIFAR-100 and ImageNet demonstrate the effectiveness of our new perspective of network pruning compared to traditional network pruning algorithms. Various searching and knowledge transfer approaches are conducted to show the effectiveness of the two components. Code is at: https://github.com/D-X-Y/NAS-Projects.

Beyond neural scaling laws: beating power law scaling via data pruning

Widely observed neural scaling laws, in which error falls off as a power of the training set size, model size, or both, have driven substantial performance improvements in deep learning. However, these improvements through scaling alone require considerable costs in compute and energy. Here we focus on the scaling of error with dataset size and show how in theory we can break beyond power law scaling and potentially even reduce it to exponential scaling instead if we have access to a high-quality data pruning metric that ranks the order in which training examples should be discarded to achieve any pruned dataset size. We then test this improved scaling prediction with pruned dataset size empirically, and indeed observe better than power law scaling in practice on ResNets trained on CIFAR-10, SVHN, and ImageNet. Next, given the importance of finding high-quality pruning metrics, we perform the first large-scale benchmarking study of ten different data pruning metrics on ImageNet. We find most existing high performing metrics scale poorly to ImageNet, while the best are computationally intensive and require labels for every image. We therefore developed a new simple, cheap and scalable self-supervised pruning metric that demonstrates comparable performance to the best supervised metrics. Overall, our work suggests that the discovery of good data-pruning metrics may provide a viable path forward to substantially improved neural scaling laws, thereby reducing the resource costs of modern deep learning.

PERP: Rethinking the Prune-Retrain Paradigm in the Era of LLMs

Neural Networks can be efficiently compressed through pruning, significantly reducing storage and computational demands while maintaining predictive performance. Simple yet effective methods like Iterative Magnitude Pruning (IMP, Han et al., 2015) remove less important parameters and require a costly retraining procedure to recover performance after pruning. However, with the rise of Large Language Models (LLMs), full retraining has become infeasible due to memory and compute constraints. In this study, we challenge the practice of retraining all parameters by demonstrating that updating only a small subset of highly expressive parameters is often sufficient to recover or even improve performance compared to full retraining. Surprisingly, retraining as little as 0.27%-0.35% of the parameters of GPT-architectures (OPT-2.7B/6.7B/13B/30B) achieves comparable performance to One Shot IMP across various sparsity levels. Our method, Parameter-Efficient Retraining after Pruning (PERP), drastically reduces compute and memory demands, enabling pruning and retraining of up to 30 billion parameter models on a single NVIDIA A100 GPU within minutes. Despite magnitude pruning being considered as unsuited for pruning LLMs, our findings show that PERP positions it as a strong contender against state-of-the-art retraining-free approaches such as Wanda (Sun et al., 2023) and SparseGPT (Frantar & Alistarh, 2023), opening up a promising alternative to avoiding retraining.

LoRAPrune: Pruning Meets Low-Rank Parameter-Efficient Fine-Tuning

Large pre-trained models (LPMs), such as LLaMA and GLM, have shown exceptional performance across various tasks through fine-tuning. Although low-rank adaption (LoRA) has emerged to cheaply fine-tune these LPMs on downstream tasks, their deployment is still hindered by the vast model scale and computational costs. Neural network pruning offers a way to compress LPMs. However, the current pruning methods designed for LPMs are not compatible with LoRA. This is due to their utilization of unstructured pruning on LPMs, impeding the merging of LoRA weights, or their dependence on the gradients of pre-trained weights to guide pruning, which can impose significant memory overhead. To this end, we propose LoRAPrune, a new framework that delivers an accurate, compact model for efficient inference in a highly memory-effective manner. Specifically, we first design a LoRA-guided pruning criterion, which uses the weights and gradients of LoRA, rather than the gradients of pre-trained weights for importance estimation. We then propose a structured iterative pruning procedure, to remove redundant channels and heads. Extensive experimental results demonstrate the superior performance of our LoRAPrune over existing approaches on the LLaMA series models. For instance, at a 50\% compression rate, LoRAPrune outperforms LLM-Pruner by a perplexity reduction of 8.0 on WikiText2 and 16.05 on PTB datasets, while concurrently reducing memory usage by 52.6\%. The code will be released after review

Rethinking the Value of Network Pruning

Network pruning is widely used for reducing the heavy inference cost of deep models in low-resource settings. A typical pruning algorithm is a three-stage pipeline, i.e., training (a large model), pruning and fine-tuning. During pruning, according to a certain criterion, redundant weights are pruned and important weights are kept to best preserve the accuracy. In this work, we make several surprising observations which contradict common beliefs. For all state-of-the-art structured pruning algorithms we examined, fine-tuning a pruned model only gives comparable or worse performance than training that model with randomly initialized weights. For pruning algorithms which assume a predefined target network architecture, one can get rid of the full pipeline and directly train the target network from scratch. Our observations are consistent for multiple network architectures, datasets, and tasks, which imply that: 1) training a large, over-parameterized model is often not necessary to obtain an efficient final model, 2) learned "important" weights of the large model are typically not useful for the small pruned model, 3) the pruned architecture itself, rather than a set of inherited "important" weights, is more crucial to the efficiency in the final model, which suggests that in some cases pruning can be useful as an architecture search paradigm. Our results suggest the need for more careful baseline evaluations in future research on structured pruning methods. We also compare with the "Lottery Ticket Hypothesis" (Frankle & Carbin 2019), and find that with optimal learning rate, the "winning ticket" initialization as used in Frankle & Carbin (2019) does not bring improvement over random initialization.

ATP-LLaVA: Adaptive Token Pruning for Large Vision Language Models

Large Vision Language Models (LVLMs) have achieved significant success across multi-modal tasks. However, the computational cost of processing long visual tokens can be prohibitively expensive on resource-limited devices. Previous methods have identified redundancy in visual tokens within the Large Language Model (LLM) decoder layers and have mitigated this by pruning tokens using a pre-defined or fixed ratio, thereby reducing computational overhead. Nonetheless, we observe that the impact of pruning ratio varies across different LLM layers and instances (image-prompt pairs). Therefore, it is essential to develop a layer-wise and instance-wise vision token pruning strategy to balance computational cost and model performance effectively. We propose ATP-LLaVA, a novel approach that adaptively determines instance-specific token pruning ratios for each LLM layer. Specifically, we introduce an Adaptive Token Pruning (ATP) module, which computes the importance score and pruning threshold based on input instance adaptively. The ATP module can be seamlessly integrated between any two LLM layers with negligible computational overhead. Additionally, we develop a Spatial Augmented Pruning (SAP) strategy that prunes visual tokens with both token redundancy and spatial modeling perspectives. Our approach reduces the average token count by 75% while maintaining performance, with only a minimal 1.9% degradation across seven widely used benchmarks. The project page can be accessed via https://yxxxb.github.io/ATP-LLaVA-page/.

The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

Random pruning is arguably the most naive way to attain sparsity in neural networks, but has been deemed uncompetitive by either post-training pruning or sparse training. In this paper, we focus on sparse training and highlight a perhaps counter-intuitive finding, that random pruning at initialization can be quite powerful for the sparse training of modern neural networks. Without any delicate pruning criteria or carefully pursued sparsity structures, we empirically demonstrate that sparsely training a randomly pruned network from scratch can match the performance of its dense equivalent. There are two key factors that contribute to this revival: (i) the network sizes matter: as the original dense networks grow wider and deeper, the performance of training a randomly pruned sparse network will quickly grow to matching that of its dense equivalent, even at high sparsity ratios; (ii) appropriate layer-wise sparsity ratios can be pre-chosen for sparse training, which shows to be another important performance booster. Simple as it looks, a randomly pruned subnetwork of Wide ResNet-50 can be sparsely trained to outperforming a dense Wide ResNet-50, on ImageNet. We also observed such randomly pruned networks outperform dense counterparts in other favorable aspects, such as out-of-distribution detection, uncertainty estimation, and adversarial robustness. Overall, our results strongly suggest there is larger-than-expected room for sparse training at scale, and the benefits of sparsity might be more universal beyond carefully designed pruning. Our source code can be found at https://github.com/VITA-Group/Random_Pruning.

Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning

The success of convolutional neural networks (CNNs) in various applications is accompanied by a significant increase in computation and parameter storage costs. Recent efforts to reduce these overheads involve pruning and compressing the weights of various layers while at the same time aiming to not sacrifice performance. In this paper, we propose a novel criterion for CNN pruning inspired by neural network interpretability: The most relevant units, i.e. weights or filters, are automatically found using their relevance scores obtained from concepts of explainable AI (XAI). By exploring this idea, we connect the lines of interpretability and model compression research. We show that our proposed method can efficiently prune CNN models in transfer-learning setups in which networks pre-trained on large corpora are adapted to specialized tasks. The method is evaluated on a broad range of computer vision datasets. Notably, our novel criterion is not only competitive or better compared to state-of-the-art pruning criteria when successive retraining is performed, but clearly outperforms these previous criteria in the resource-constrained application scenario in which the data of the task to be transferred to is very scarce and one chooses to refrain from fine-tuning. Our method is able to compress the model iteratively while maintaining or even improving accuracy. At the same time, it has a computational cost in the order of gradient computation and is comparatively simple to apply without the need for tuning hyperparameters for pruning.

CFSP: An Efficient Structured Pruning Framework for LLMs with Coarse-to-Fine Activation Information

The colossal parameters and computational overhead of Large Language Models (LLMs) challenge their real-world applications. Network pruning, which targets unstructured or structured sparsity by removing redundant parameters, has recently been explored for LLM acceleration. Existing LLM pruning works focus on unstructured pruning, which typically requires special hardware support for a practical speed-up. In contrast, structured pruning can reduce latency on general devices. However, it remains a challenge to perform structured pruning efficiently and maintain performance, especially at high sparsity ratios. To this end, we introduce an efficient structured pruning framework named CFSP, which leverages both Coarse (interblock) and Fine-grained (intrablock) activation information as an importance criterion to guide pruning. The pruning is highly efficient, as it only requires one forward pass to compute feature activations. Specifically, we first allocate the sparsity budget across blocks based on their importance and then retain important weights within each block. In addition, we introduce a recovery fine-tuning strategy that adaptively allocates training overhead based on coarse-grained importance to further improve performance. Experimental results demonstrate that CFSP outperforms existing methods on diverse models across various sparsity budgets. Our code will be available at https://github.com/wyxscir/CFSP.

RASD: Retrieval-Augmented Speculative Decoding

Speculative decoding accelerates inference in large language models (LLMs) by generating draft tokens for target model verification. Current approaches for obtaining draft tokens rely on lightweight draft models or additional model structures to generate draft tokens and retrieve context from databases. Due to the draft model's small size and limited training data, model-based speculative decoding frequently becomes less effective in out-of-domain scenarios. Additionally, the time cost of the drafting phase results in a low upper limit on acceptance length during the verification step, limiting overall efficiency. This paper proposes RASD (Retrieval-Augmented Speculative Decoding), which adopts retrieval methods to enhance model-based speculative decoding. We introduce tree pruning and tree fusion to achieve this. Specifically, we develop a pruning method based on the draft model's probability distribution to construct the optimal retrieval tree. Second, we employ the longest prefix matching algorithm to merge the tree generated by the draft model with the retrieval tree, resulting in a unified tree for verification. Experimental results demonstrate that RASD achieves state-of-the-art inference acceleration across tasks such as DocQA, Summary, Code, and In-Domain QA. Moreover, RASD exhibits strong scalability, seamlessly integrating with various speculative decoding approaches, including both generation-based and retrieval-based methods.

Sparse Training via Boosting Pruning Plasticity with Neuroregeneration

Works on lottery ticket hypothesis (LTH) and single-shot network pruning (SNIP) have raised a lot of attention currently on post-training pruning (iterative magnitude pruning), and before-training pruning (pruning at initialization). The former method suffers from an extremely large computation cost and the latter usually struggles with insufficient performance. In comparison, during-training pruning, a class of pruning methods that simultaneously enjoys the training/inference efficiency and the comparable performance, temporarily, has been less explored. To better understand during-training pruning, we quantitatively study the effect of pruning throughout training from the perspective of pruning plasticity (the ability of the pruned networks to recover the original performance). Pruning plasticity can help explain several other empirical observations about neural network pruning in literature. We further find that pruning plasticity can be substantially improved by injecting a brain-inspired mechanism called neuroregeneration, i.e., to regenerate the same number of connections as pruned. We design a novel gradual magnitude pruning (GMP) method, named gradual pruning with zero-cost neuroregeneration (GraNet), that advances state of the art. Perhaps most impressively, its sparse-to-sparse version for the first time boosts the sparse-to-sparse training performance over various dense-to-sparse methods with ResNet-50 on ImageNet without extending the training time. We release all codes in https://github.com/Shiweiliuiiiiiii/GraNet.

Process Reinforcement through Implicit Rewards

Dense process rewards have proven a more effective alternative to the sparse outcome-level rewards in the inference-time scaling of large language models (LLMs), particularly in tasks requiring complex multi-step reasoning. While dense rewards also offer an appealing choice for the reinforcement learning (RL) of LLMs since their fine-grained rewards have the potential to address some inherent issues of outcome rewards, such as training efficiency and credit assignment, this potential remains largely unrealized. This can be primarily attributed to the challenges of training process reward models (PRMs) online, where collecting high-quality process labels is prohibitively expensive, making them particularly vulnerable to reward hacking. To address these challenges, we propose PRIME (Process Reinforcement through IMplicit rEwards), which enables online PRM updates using only policy rollouts and outcome labels through implict process rewards. PRIME combines well with various advantage functions and forgoes the dedicated reward model training phrase that existing approaches require, substantially reducing the development overhead. We demonstrate PRIME's effectiveness on competitional math and coding. Starting from Qwen2.5-Math-7B-Base, PRIME achieves a 15.1% average improvement across several key reasoning benchmarks over the SFT model. Notably, our resulting model, Eurus-2-7B-PRIME, surpasses Qwen2.5-Math-7B-Instruct on seven reasoning benchmarks with 10% of its training data.

Performance-aware Approximation of Global Channel Pruning for Multitask CNNs

Global channel pruning (GCP) aims to remove a subset of channels (filters) across different layers from a deep model without hurting the performance. Previous works focus on either single task model pruning or simply adapting it to multitask scenario, and still face the following problems when handling multitask pruning: 1) Due to the task mismatch, a well-pruned backbone for classification task focuses on preserving filters that can extract category-sensitive information, causing filters that may be useful for other tasks to be pruned during the backbone pruning stage; 2) For multitask predictions, different filters within or between layers are more closely related and interacted than that for single task prediction, making multitask pruning more difficult. Therefore, aiming at multitask model compression, we propose a Performance-Aware Global Channel Pruning (PAGCP) framework. We first theoretically present the objective for achieving superior GCP, by considering the joint saliency of filters from intra- and inter-layers. Then a sequentially greedy pruning strategy is proposed to optimize the objective, where a performance-aware oracle criterion is developed to evaluate sensitivity of filters to each task and preserve the globally most task-related filters. Experiments on several multitask datasets show that the proposed PAGCP can reduce the FLOPs and parameters by over 60% with minor performance drop, and achieves 1.2xsim3.3x acceleration on both cloud and mobile platforms.

An EMO Joint Pruning with Multiple Sub-networks: Fast and Effect

The network pruning algorithm based on evolutionary multi-objective (EMO) can balance the pruning rate and performance of the network. However, its population-based nature often suffers from the complex pruning optimization space and the highly resource-consuming pruning structure verification process, which limits its application. To this end, this paper proposes an EMO joint pruning with multiple sub-networks (EMO-PMS) to reduce space complexity and resource consumption. First, a divide-and-conquer EMO network pruning framework is proposed, which decomposes the complex EMO pruning task on the whole network into easier sub-tasks on multiple sub-networks. On the one hand, this decomposition reduces the pruning optimization space and decreases the optimization difficulty; on the other hand, the smaller network structure converges faster, so the computational resource consumption of the proposed algorithm is lower. Secondly, a sub-network training method based on cross-network constraints is designed so that the sub-network can process the features generated by the previous one through feature constraints. This method allows sub-networks optimized independently to collaborate better and improves the overall performance of the pruned network. Finally, a multiple sub-networks joint pruning method based on EMO is proposed. For one thing, it can accurately measure the feature processing capability of the sub-networks with the pre-trained feature selector. For another, it can combine multi-objective pruning results on multiple sub-networks through global performance impairment ranking to design a joint pruning scheme. The proposed algorithm is validated on three datasets with different challenging. Compared with fifteen advanced pruning algorithms, the experiment results exhibit the effectiveness and efficiency of the proposed algorithm.

Reasoning-SQL: Reinforcement Learning with SQL Tailored Partial Rewards for Reasoning-Enhanced Text-to-SQL

Text-to-SQL is a challenging task involving multiple reasoning-intensive subtasks, including natural language understanding, database schema comprehension, and precise SQL query formulation. Existing approaches often rely on handcrafted reasoning paths with inductive biases that can limit their overall effectiveness. Motivated by the recent success of reasoning-enhanced models such as DeepSeek R1 and OpenAI o1, which effectively leverage reward-driven self-exploration to enhance reasoning capabilities and generalization, we propose a novel set of partial rewards tailored specifically for the Text-to-SQL task. Our reward set includes schema-linking, AI feedback, n-gram similarity, and syntax check, explicitly designed to address the reward sparsity issue prevalent in reinforcement learning (RL). Leveraging group relative policy optimization (GRPO), our approach explicitly encourages large language models (LLMs) to develop intrinsic reasoning skills necessary for accurate SQL query generation. With models of different sizes, we demonstrate that RL-only training with our proposed rewards consistently achieves higher accuracy and superior generalization compared to supervised fine-tuning (SFT). Remarkably, our RL-trained 14B-parameter model significantly outperforms larger proprietary models, e.g. o3-mini by 4% and Gemini-1.5-Pro-002 by 3% on the BIRD benchmark. These highlight the efficacy of our proposed RL-training framework with partial rewards for enhancing both accuracy and reasoning capabilities in Text-to-SQL tasks.

Less is More: Efficient Black-box Attribution via Minimal Interpretable Subset Selection

To develop a trustworthy AI system, which aim to identify the input regions that most influence the models decisions. The primary task of existing attribution methods lies in efficiently and accurately identifying the relationships among input-prediction interactions. Particularly when the input data is discrete, such as images, analyzing the relationship between inputs and outputs poses a significant challenge due to the combinatorial explosion. In this paper, we propose a novel and efficient black-box attribution mechanism, LiMA (Less input is More faithful for Attribution), which reformulates the attribution of important regions as an optimization problem for submodular subset selection. First, to accurately assess interactions, we design a submodular function that quantifies subset importance and effectively captures their impact on decision outcomes. Then, efficiently ranking input sub-regions by their importance for attribution, we improve optimization efficiency through a novel bidirectional greedy search algorithm. LiMA identifies both the most and least important samples while ensuring an optimal attribution boundary that minimizes errors. Extensive experiments on eight foundation models demonstrate that our method provides faithful interpretations with fewer regions and exhibits strong generalization, shows an average improvement of 36.3% in Insertion and 39.6% in Deletion. Our method also outperforms the naive greedy search in attribution efficiency, being 1.6 times faster. Furthermore, when explaining the reasons behind model prediction errors, the average highest confidence achieved by our method is, on average, 86.1% higher than that of state-of-the-art attribution algorithms. The code is available at https://github.com/RuoyuChen10/LIMA.

The Journey Matters: Average Parameter Count over Pre-training Unifies Sparse and Dense Scaling Laws

Pruning eliminates unnecessary parameters in neural networks; it offers a promising solution to the growing computational demands of large language models (LLMs). While many focus on post-training pruning, sparse pre-training--which combines pruning and pre-training into a single phase--provides a simpler alternative. In this work, we present the first systematic exploration of optimal sparse pre-training configurations for LLMs through an examination of 80 unique pruning schedules across different sparsity levels and training durations. We find that initiating pruning at 25% of total training compute and concluding at 75% achieves near-optimal final evaluation loss. These findings provide valuable insights for efficient and effective sparse pre-training of LLMs. Furthermore, we propose a new scaling law that modifies the Chinchilla scaling law to use the average parameter count over pre-training. Through empirical and theoretical validation, we demonstrate that this modified scaling law accurately models evaluation loss for both sparsely and densely pre-trained LLMs, unifying scaling laws across pre-training paradigms. Our findings indicate that while sparse pre-training achieves the same final model quality as dense pre-training for equivalent compute budgets, it provides substantial benefits through reduced model size, enabling significant potential computational savings during inference.

Structurally Prune Anything: Any Architecture, Any Framework, Any Time

Neural network pruning serves as a critical technique for enhancing the efficiency of deep learning models. Unlike unstructured pruning, which only sets specific parameters to zero, structured pruning eliminates entire channels, thus yielding direct computational and storage benefits. However, the diverse patterns for coupling parameters, such as residual connections and group convolutions, the diverse deep learning frameworks, and the various time stages at which pruning can be performed make existing pruning methods less adaptable to different architectures, frameworks, and pruning criteria. To address this, we introduce Structurally Prune Anything (SPA), a versatile structured pruning framework that can prune neural networks with any architecture, from any framework, and at any stage of training. SPA leverages a standardized computational graph and ONNX representation to prune diverse neural network architectures without the need for manual intervention. SPA employs a group-level importance estimation method, which groups dependent computational operators, estimates their importance, and prunes unimportant coupled channels. This enables the transfer of various existing pruning criteria into a structured group style. As a result, SPA supports pruning at any time, either before training, after training with fine-tuning, or after training without fine-tuning. In the context of the latter, we introduce Optimal Brain SPA (OBSPA), an algorithm that achieves state-of-the-art pruning results needing neither fine-tuning nor calibration data. In extensive experiments, SPA shows competitive to state-of-the-art pruning performance across various architectures, from popular frameworks, at different pruning times.

Stabilizing the Lottery Ticket Hypothesis

Pruning is a well-established technique for removing unnecessary structure from neural networks after training to improve the performance of inference. Several recent results have explored the possibility of pruning at initialization time to provide similar benefits during training. In particular, the "lottery ticket hypothesis" conjectures that typical neural networks contain small subnetworks that can train to similar accuracy in a commensurate number of steps. The evidence for this claim is that a procedure based on iterative magnitude pruning (IMP) reliably finds such subnetworks retroactively on small vision tasks. However, IMP fails on deeper networks, and proposed methods to prune before training or train pruned networks encounter similar scaling limitations. In this paper, we argue that these efforts have struggled on deeper networks because they have focused on pruning precisely at initialization. We modify IMP to search for subnetworks that could have been obtained by pruning early in training (0.1% to 7% through) rather than at iteration 0. With this change, it finds small subnetworks of deeper networks (e.g., 80% sparsity on Resnet-50) that can complete the training process to match the accuracy of the original network on more challenging tasks (e.g., ImageNet). In situations where IMP fails at iteration 0, the accuracy benefits of delaying pruning accrue rapidly over the earliest iterations of training. To explain these behaviors, we study subnetwork "stability," finding that - as accuracy improves in this fashion - IMP subnetworks train to parameters closer to those of the full network and do so with improved consistency in the face of gradient noise. These results offer new insights into the opportunity to prune large-scale networks early in training and the behaviors underlying the lottery ticket hypothesis

In defense of parameter sharing for model-compression

When considering a model architecture, there are several ways to reduce its memory footprint. Historically, popular approaches included selecting smaller architectures and creating sparse networks through pruning. More recently, randomized parameter-sharing (RPS) methods have gained traction for model compression at start of training. In this paper, we comprehensively assess the trade-off between memory and accuracy across RPS, pruning techniques, and building smaller models. Our findings demonstrate that RPS, which is both data and model-agnostic, consistently outperforms/matches smaller models and all moderately informed pruning strategies, such as MAG, SNIP, SYNFLOW, and GRASP, across the entire compression range. This advantage becomes particularly pronounced in higher compression scenarios. Notably, even when compared to highly informed pruning techniques like Lottery Ticket Rewinding (LTR), RPS exhibits superior performance in high compression settings. This points out inherent capacity advantage that RPS enjoys over sparse models. Theoretically, we establish RPS as a superior technique in terms of memory-efficient representation when compared to pruning for linear models. This paper argues in favor of paradigm shift towards RPS based models. During our rigorous evaluation of RPS, we identified issues in the state-of-the-art RPS technique ROAST, specifically regarding stability (ROAST's sensitivity to initialization hyperparameters, often leading to divergence) and Pareto-continuity (ROAST's inability to recover the accuracy of the original model at zero compression). We provably address both of these issues. We refer to the modified RPS, which incorporates our improvements, as STABLE-RPS.

Is Oracle Pruning the True Oracle?

Oracle pruning, which selects unimportant weights by minimizing the pruned train loss, has been taken as the foundation for most neural network pruning methods for over 35 years, while few (if not none) have thought about how much the foundation really holds. This paper, for the first time, attempts to examine its validity on modern deep models through empirical correlation analyses and provide reflections on the field of neural network pruning. Specifically, for a typical pruning algorithm with three stages (pertaining, pruning, and retraining), we analyze the model performance correlation before and after retraining. Extensive experiments (37K models are trained) across a wide spectrum of models (LeNet5, VGG, ResNets, ViT, MLLM) and datasets (MNIST and its variants, CIFAR10/CIFAR100, ImageNet-1K, MLLM data) are conducted. The results lead to a surprising conclusion: on modern deep learning models, the performance before retraining is barely correlated with the performance after retraining. Namely, the weights selected by oracle pruning can hardly guarantee a good performance after retraining. This further implies that existing works using oracle pruning to derive pruning criteria may be groundless from the beginning. Further studies suggest the rising task complexity is one factor that makes oracle pruning invalid nowadays. Finally, given the evidence, we argue that the retraining stage in a pruning algorithm should be accounted for when developing any pruning criterion.

Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning

Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. Code and models are available at https://github.com/CJReinforce/PURE.

Distilling the Knowledge in Data Pruning

With the increasing size of datasets used for training neural networks, data pruning becomes an attractive field of research. However, most current data pruning algorithms are limited in their ability to preserve accuracy compared to models trained on the full data, especially in high pruning regimes. In this paper we explore the application of data pruning while incorporating knowledge distillation (KD) when training on a pruned subset. That is, rather than relying solely on ground-truth labels, we also use the soft predictions from a teacher network pre-trained on the complete data. By integrating KD into training, we demonstrate significant improvement across datasets, pruning methods, and on all pruning fractions. We first establish a theoretical motivation for employing self-distillation to improve training on pruned data. Then, we empirically make a compelling and highly practical observation: using KD, simple random pruning is comparable or superior to sophisticated pruning methods across all pruning regimes. On ImageNet for example, we achieve superior accuracy despite training on a random subset of only 50% of the data. Additionally, we demonstrate a crucial connection between the pruning factor and the optimal knowledge distillation weight. This helps mitigate the impact of samples with noisy labels and low-quality images retained by typical pruning algorithms. Finally, we make an intriguing observation: when using lower pruning fractions, larger teachers lead to accuracy degradation, while surprisingly, employing teachers with a smaller capacity than the student's may improve results. Our code will be made available.

A Three-regime Model of Network Pruning

Recent work has highlighted the complex influence training hyperparameters, e.g., the number of training epochs, can have on the prunability of machine learning models. Perhaps surprisingly, a systematic approach to predict precisely how adjusting a specific hyperparameter will affect prunability remains elusive. To address this gap, we introduce a phenomenological model grounded in the statistical mechanics of learning. Our approach uses temperature-like and load-like parameters to model the impact of neural network (NN) training hyperparameters on pruning performance. A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance. Based on this transition, we build a three-regime model by taxonomizing the global structure of the pruned NN loss landscape. Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model. Based on our results, we present three case-studies: 1) determining whether to increase or decrease a hyperparameter for improved pruning; 2) selecting the best model to prune from a family of models; and 3) tuning the hyperparameter of the Sharpness Aware Minimization method for better pruning performance.

"Understanding Robustness Lottery": A Geometric Visual Comparative Analysis of Neural Network Pruning Approaches

Deep learning approaches have provided state-of-the-art performance in many applications by relying on large and overparameterized neural networks. However, such networks have been shown to be very brittle and are difficult to deploy on resource-limited platforms. Model pruning, i.e., reducing the size of the network, is a widely adopted strategy that can lead to a more robust and compact model. Many heuristics exist for model pruning, but empirical studies show that some heuristics improve performance whereas others can make models more brittle or have other side effects. This work aims to shed light on how different pruning methods alter the network's internal feature representation and the corresponding impact on model performance. To facilitate a comprehensive comparison and characterization of the high-dimensional model feature space, we introduce a visual geometric analysis of feature representations. We decomposed and evaluated a set of critical geometric concepts from the common adopted classification loss, and used them to design a visualization system to compare and highlight the impact of pruning on model performance and feature representation. The proposed tool provides an environment for in-depth comparison of pruning methods and a comprehensive understanding of how model response to common data corruption. By leveraging the proposed visualization, machine learning researchers can reveal the similarities between pruning methods and redundant in robustness evaluation benchmarks, obtain geometric insights about the differences between pruned models that achieve superior robustness performance, and identify samples that are robust or fragile to model pruning and common data corruption to model pruning and data corruption but also obtain insights and explanations on how some pruned models achieve superior robustness performance.

DivPrune: Diversity-based Visual Token Pruning for Large Multimodal Models

Large Multimodal Models (LMMs) have emerged as powerful models capable of understanding various data modalities, including text, images, and videos. LMMs encode both text and visual data into tokens that are then combined and processed by an integrated Large Language Model (LLM). Including visual tokens substantially increases the total token count, often by thousands. The increased input length for LLM significantly raises the complexity of inference, resulting in high latency in LMMs. To address this issue, token pruning methods, which remove part of the visual tokens, are proposed. The existing token pruning methods either require extensive calibration and fine-tuning or rely on suboptimal importance metrics which results in increased redundancy among the retained tokens. In this paper, we first formulate token pruning as Max-Min Diversity Problem (MMDP) where the goal is to select a subset such that the diversity among the selected {tokens} is maximized. Then, we solve the MMDP to obtain the selected subset and prune the rest. The proposed method, DivPrune, reduces redundancy and achieves the highest diversity of the selected tokens. By ensuring high diversity, the selected tokens better represent the original tokens, enabling effective performance even at high pruning ratios without requiring fine-tuning. Extensive experiments with various LMMs show that DivPrune achieves state-of-the-art accuracy over 16 image- and video-language datasets. Additionally, DivPrune reduces both the end-to-end latency and GPU memory usage for the tested models. The code is available https://github.com/vbdi/divprune{here}.

Selectivity Drives Productivity: Efficient Dataset Pruning for Enhanced Transfer Learning

Massive data is often considered essential for deep learning applications, but it also incurs significant computational and infrastructural costs. Therefore, dataset pruning (DP) has emerged as an effective way to improve data efficiency by identifying and removing redundant training samples without sacrificing performance. In this work, we aim to address the problem of DP for transfer learning, i.e., how to prune a source dataset for improved pretraining efficiency and lossless finetuning accuracy on downstream target tasks. To our best knowledge, the problem of DP for transfer learning remains open, as previous studies have primarily addressed DP and transfer learning as separate problems. By contrast, we establish a unified viewpoint to integrate DP with transfer learning and find that existing DP methods are not suitable for the transfer learning paradigm. We then propose two new DP methods, label mapping and feature mapping, for supervised and self-supervised pretraining settings respectively, by revisiting the DP problem through the lens of source-target domain mapping. Furthermore, we demonstrate the effectiveness of our approach on numerous transfer learning tasks. We show that source data classes can be pruned by up to 40% ~ 80% without sacrificing downstream performance, resulting in a significant 2 ~ 5 times speed-up during the pretraining stage. Besides, our proposal exhibits broad applicability and can improve other computationally intensive transfer learning techniques, such as adversarial pretraining. Codes are available at https://github.com/OPTML-Group/DP4TL.

LAPP: Layer Adaptive Progressive Pruning for Compressing CNNs from Scratch

Structured pruning is a commonly used convolutional neural network (CNN) compression approach. Pruning rate setting is a fundamental problem in structured pruning. Most existing works introduce too many additional learnable parameters to assign different pruning rates across different layers in CNN or cannot control the compression rate explicitly. Since too narrow network blocks information flow for training, automatic pruning rate setting cannot explore a high pruning rate for a specific layer. To overcome these limitations, we propose a novel framework named Layer Adaptive Progressive Pruning (LAPP), which gradually compresses the network during initial training of a few epochs from scratch. In particular, LAPP designs an effective and efficient pruning strategy that introduces a learnable threshold for each layer and FLOPs constraints for network. Guided by both task loss and FLOPs constraints, the learnable thresholds are dynamically and gradually updated to accommodate changes of importance scores during training. Therefore the pruning strategy can gradually prune the network and automatically determine the appropriate pruning rates for each layer. What's more, in order to maintain the expressive power of the pruned layer, before training starts, we introduce an additional lightweight bypass for each convolutional layer to be pruned, which only adds relatively few additional burdens. Our method demonstrates superior performance gains over previous compression methods on various datasets and backbone architectures. For example, on CIFAR-10, our method compresses ResNet-20 to 40.3% without accuracy drop. 55.6% of FLOPs of ResNet-18 are reduced with 0.21% top-1 accuracy increase and 0.40% top-5 accuracy increase on ImageNet.

Trained Rank Pruning for Efficient Deep Neural Networks

The performance of Deep Neural Networks (DNNs) keeps elevating in recent years with increasing network depth and width. To enable DNNs on edge devices like mobile phones, researchers proposed several network compression methods including pruning, quantization and factorization. Among the factorization-based approaches, low-rank approximation has been widely adopted because of its solid theoretical rationale and efficient implementations. Several previous works attempted to directly approximate a pre-trained model by low-rank decomposition; however, small approximation errors in parameters can ripple a large prediction loss. As a result, performance usually drops significantly and a sophisticated fine-tuning is required to recover accuracy. We argue that it is not optimal to separate low-rank approximation from training. Unlike previous works, this paper integrates low rank approximation and regularization into the training. We propose Trained Rank Pruning (TRP), which iterates low rank approximation and training. TRP maintains the capacity of original network while imposes low-rank constraints during training. A stochastic sub-gradient descent optimized nuclear regularization is utilized to further encourage low rank in TRP. The TRP trained network has low-rank structure in nature, and can be approximated with negligible performance loss, eliminating fine-tuning after low rank approximation. The methods are comprehensively evaluated on CIFAR-10 and ImageNet, outperforming previous compression methods using low rank approximation. Code is available: https://github.com/yuhuixu1993/Trained-Rank-Pruning

On Designing Effective RL Reward at Training Time for LLM Reasoning

Reward models have been increasingly critical for improving the reasoning capability of LLMs. Existing research has shown that a well-trained reward model can substantially improve model performances at inference time via search. However, the potential of reward models during RL training time still remains largely under-explored. It is currently unclear whether these reward models can provide additional training signals to enhance the reasoning capabilities of LLMs in RL training that uses sparse success rewards, which verify the correctness of solutions. In this work, we evaluate popular reward models for RL training, including the Outcome-supervised Reward Model (ORM) and the Process-supervised Reward Model (PRM), and train a collection of LLMs for math problems using RL by combining these learned rewards with success rewards. Surprisingly, even though these learned reward models have strong inference-time performances, they may NOT help or even hurt RL training, producing worse performances than LLMs trained with the success reward only. Our analysis reveals that an LLM can receive high rewards from some of these reward models by repeating correct but unnecessary reasoning steps, leading to a severe reward hacking issue. Therefore, we introduce two novel reward refinement techniques, including Clipping and Delta. The key idea is to ensure the accumulative reward of any reasoning trajectory is upper-bounded to keep a learned reward model effective without being exploited. We evaluate our techniques with multiple reward models over a set of 1.5B and 7B LLMs on MATH and GSM8K benchmarks and demonstrate that with a carefully designed reward function, RL training without any additional supervised tuning can improve all the evaluated LLMs, including the state-of-the-art 7B LLM Qwen2.5-Math-7B-Instruct on MATH and GSM8K benchmarks.

ToolRL: Reward is All Tool Learning Needs

Current Large Language Models (LLMs) often undergo supervised fine-tuning (SFT) to acquire tool use capabilities. However, SFT struggles to generalize to unfamiliar or complex tool use scenarios. Recent advancements in reinforcement learning (RL), particularly with R1-like models, have demonstrated promising reasoning and generalization abilities. Yet, reward design for tool use presents unique challenges: multiple tools may be invoked with diverse parameters, and coarse-grained reward signals, such as answer matching, fail to offer the finegrained feedback required for effective learning. In this work, we present the first comprehensive study on reward design for tool selection and application tasks within the RL paradigm. We systematically explore a wide range of reward strategies, analyzing their types, scales, granularity, and temporal dynamics. Building on these insights, we propose a principled reward design tailored for tool use tasks and apply it to train LLMs using Group Relative Policy Optimization (GRPO). Empirical evaluations across diverse benchmarks demonstrate that our approach yields robust, scalable, and stable training, achieving a 17% improvement over base models and a 15% gain over SFT models. These results highlight the critical role of thoughtful reward design in enhancing the tool use capabilities and generalization performance of LLMs. All the codes are released to facilitate future research.

Provence: efficient and robust context pruning for retrieval-augmented generation

Retrieval-augmented generation improves various aspects of large language models (LLMs) generation, but suffers from computational overhead caused by long contexts as well as the propagation of irrelevant retrieved information into generated responses. Context pruning deals with both aspects, by removing irrelevant parts of retrieved contexts before LLM generation. Existing context pruning approaches are however limited, and do not provide a universal model that would be both efficient and robust in a wide range of scenarios, e.g., when contexts contain a variable amount of relevant information or vary in length, or when evaluated on various domains. In this work, we close this gap and introduce Provence (Pruning and Reranking Of retrieVEd relevaNt ContExts), an efficient and robust context pruner for Question Answering, which dynamically detects the needed amount of pruning for a given context and can be used out-of-the-box for various domains. The three key ingredients of Provence are formulating the context pruning task as sequence labeling, unifying context pruning capabilities with context reranking, and training on diverse data. Our experimental results show that Provence enables context pruning with negligible to no drop in performance, in various domains and settings, at almost no cost in a standard RAG pipeline. We also conduct a deeper analysis alongside various ablations to provide insights into training context pruners for future work.

ECoFLaP: Efficient Coarse-to-Fine Layer-Wise Pruning for Vision-Language Models

Large Vision-Language Models (LVLMs) can understand the world comprehensively by integrating rich information from different modalities, achieving remarkable advancements on various multimodal downstream tasks. However, deploying LVLMs is often problematic due to their massive computational/energy costs and carbon consumption. Such issues make it infeasible to adopt conventional iterative global pruning, which is costly due to computing the Hessian matrix of the entire large model for sparsification. Alternatively, several studies have recently proposed layer-wise pruning approaches to avoid the expensive computation of global pruning and efficiently compress model weights according to their importance within a layer. However, they often suffer from suboptimal model compression due to their lack of a global perspective. To address this limitation in recent efficient pruning methods for large models, we propose Efficient Coarse-to-Fine LayerWise Pruning (ECoFLaP), a two-stage coarse-to-fine weight pruning approach for LVLMs. We first determine the sparsity ratios of different layers or blocks by leveraging the global importance score, which is efficiently computed based on the zeroth-order approximation of the global model gradients. Then, the model performs local layer-wise unstructured weight pruning based on globally-informed sparsity ratios. We validate our proposed method across various multimodal and unimodal models and datasets, demonstrating significant performance improvements over prevalent pruning techniques in the high-sparsity regime.

Adaptive Inference-Time Compute: LLMs Can Predict if They Can Do Better, Even Mid-Generation

Inference-time computation is a powerful paradigm to enhance the performance of large language models (LLMs), with Best-of-N sampling being a widely used technique. However, this method is computationally expensive, requiring both (1) an external reward model and (2) the generation of multiple samples. In this work, we introduce a new generative self-evaluation scheme designed to adaptively reduce the number of generated samples while maintaining or even improving performance. We use a generative reward model formulation, allowing the LLM to predict mid-generation the probability that restarting the generation will yield a better response. These predictions are obtained without an external reward model and can be used to decide whether or not to generate more samples, prune unpromising samples early on, or to pick the best sample. This capability is very inexpensive as it involves generating a single predefined token. Trained using a dataset constructed with real unfiltered LMSYS user prompts, Llama 3.1 8B's win rate against GPT-4 on AlpacaEval increases from 21% to 34% with 16 samples and math performance on GSM8K improves from 84% to 91%. By sampling only when the LLM determines that it is beneficial to do so and adaptively adjusting temperature annealing, we demonstrate that 74% of the improvement from using 16 samples can be achieved with only 1.2 samples on average. We further demonstrate that 50-75% of samples can be pruned early in generation with minimal degradation in performance. Overall, our methods enable more efficient and scalable compute utilization during inference for LLMs.

Effective pruning of web-scale datasets based on complexity of concept clusters

Utilizing massive web-scale datasets has led to unprecedented performance gains in machine learning models, but also imposes outlandish compute requirements for their training. In order to improve training and data efficiency, we here push the limits of pruning large-scale multimodal datasets for training CLIP-style models. Today's most effective pruning method on ImageNet clusters data samples into separate concepts according to their embedding and prunes away the most prototypical samples. We scale this approach to LAION and improve it by noting that the pruning rate should be concept-specific and adapted to the complexity of the concept. Using a simple and intuitive complexity measure, we are able to reduce the training cost to a quarter of regular training. By filtering from the LAION dataset, we find that training on a smaller set of high-quality data can lead to higher performance with significantly lower training costs. More specifically, we are able to outperform the LAION-trained OpenCLIP-ViT-B32 model on ImageNet zero-shot accuracy by 1.1p.p. while only using 27.7% of the data and training compute. Despite a strong reduction in training cost, we also see improvements on ImageNet dist. shifts, retrieval tasks and VTAB. On the DataComp Medium benchmark, we achieve a new state-of-the-art ImageNet zero-shot accuracy and a competitive average zero-shot accuracy on 38 evaluation tasks.

Grokking Tickets: Lottery Tickets Accelerate Grokking

Grokking is one of the most surprising puzzles in neural network generalization: a network first reaches a memorization solution with perfect training accuracy and poor generalization, but with further training, it reaches a perfectly generalized solution. We aim to analyze the mechanism of grokking from the lottery ticket hypothesis, identifying the process to find the lottery tickets (good sparse subnetworks) as the key to describing the transitional phase between memorization and generalization. We refer to these subnetworks as ''Grokking tickets'', which is identified via magnitude pruning after perfect generalization. First, using ''Grokking tickets'', we show that the lottery tickets drastically accelerate grokking compared to the dense networks on various configurations (MLP and Transformer, and an arithmetic and image classification tasks). Additionally, to verify that ''Grokking ticket'' are a more critical factor than weight norms, we compared the ''good'' subnetworks with a dense network having the same L1 and L2 norms. Results show that the subnetworks generalize faster than the controlled dense model. In further investigations, we discovered that at an appropriate pruning rate, grokking can be achieved even without weight decay. We also show that speedup does not happen when using tickets identified at the memorization solution or transition between memorization and generalization or when pruning networks at the initialization (Random pruning, Grasp, SNIP, and Synflow). The results indicate that the weight norm of network parameters is not enough to explain the process of grokking, but the importance of finding good subnetworks to describe the transition from memorization to generalization. The implementation code can be accessed via this link: https://github.com/gouki510/Grokking-Tickets.

Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention Graph in Pre-Trained Transformers

Deployment of Transformer models on edge devices is becoming increasingly challenging due to the exponentially growing inference cost that scales quadratically with the number of tokens in the input sequence. Token pruning is an emerging solution to address this challenge due to its ease of deployment on various Transformer backbones. However, most token pruning methods require computationally expensive fine-tuning, which is undesirable in many edge deployment cases. In this work, we propose Zero-TPrune, the first zero-shot method that considers both the importance and similarity of tokens in performing token pruning. It leverages the attention graph of pre-trained Transformer models to produce an importance distribution for tokens via our proposed Weighted Page Rank (WPR) algorithm. This distribution further guides token partitioning for efficient similarity-based pruning. Due to the elimination of the fine-tuning overhead, Zero-TPrune can prune large models at negligible computational cost, switch between different pruning configurations at no computational cost, and perform hyperparameter tuning efficiently. We evaluate the performance of Zero-TPrune on vision tasks by applying it to various vision Transformer backbones and testing them on ImageNet. Without any fine-tuning, Zero-TPrune reduces the FLOPs cost of DeiT-S by 34.7\% and improves its throughput by 45.3\% with only 0.4\% accuracy loss. Compared with state-of-the-art pruning methods that require fine-tuning, Zero-TPrune not only eliminates the need for fine-tuning after pruning but also does so with only 0.1\% accuracy loss. Compared with state-of-the-art fine-tuning-free pruning methods, Zero-TPrune reduces accuracy loss by up to 49\% with the same or higher throughput.

Preference-free Alignment Learning with Regularized Relevance Reward

Learning from human preference has been considered key to aligning Large Language Models (LLMs) with human values. However, contrary to popular belief, our preliminary study reveals that reward models trained on human preference datasets tend to give higher scores to long off-topic responses than short on-topic ones. Motivated by this observation, we explore a preference-free approach utilizing `relevance' as a key objective for alignment. On our first attempt, we find that the relevance score obtained by a retriever alone is vulnerable to reward hacking, i.e., overoptimizing to undesired shortcuts, when we utilize the score as a reward for reinforcement learning. To mitigate it, we integrate effective inductive biases into the vanilla relevance to regularize each other, resulting in a mixture of reward functions: Regularized Relevance Reward (R^3). R^3 significantly improves performance on preference benchmarks by providing a robust reward signal. Notably, R^3 does not require any human preference datasets (i.e., preference-free), outperforming open-source reward models in improving human preference. Our analysis demonstrates that R^3 has advantages in elevating human preference while minimizing its side effects. Finally, we show the generalizability of R^3, consistently improving instruction-tuned models in various backbones and sizes without additional dataset cost. Our code is available at https://github.com/naver-ai/RRR.

ViLBench: A Suite for Vision-Language Process Reward Modeling

Process-supervised reward models serve as a fine-grained function that provides detailed step-wise feedback to model responses, facilitating effective selection of reasoning trajectories for complex tasks. Despite its advantages, evaluation on PRMs remains less explored, especially in the multimodal domain. To address this gap, this paper first benchmarks current vision large language models (VLLMs) as two types of reward models: output reward models (ORMs) and process reward models (PRMs) on multiple vision-language benchmarks, which reveal that neither ORM nor PRM consistently outperforms across all tasks, and superior VLLMs do not necessarily yield better rewarding performance. To further advance evaluation, we introduce ViLBench, a vision-language benchmark designed to require intensive process reward signals. Notably, OpenAI's GPT-4o with Chain-of-Thought (CoT) achieves only 27.3% accuracy, indicating the benchmark's challenge for current VLLMs. Lastly, we preliminarily showcase a promising pathway towards bridging the gap between general VLLMs and reward models -- by collecting 73.6K vision-language process reward data using an enhanced tree-search algorithm, our 3B model is able to achieve an average improvement of 3.3% over standard CoT and up to 2.5% compared to its untrained counterpart on ViLBench by selecting OpenAI o1's generations. We release the implementations at https://ucsc-vlaa.github.io/ViLBench with our code, model, and data.

Inference-Time Scaling for Generalist Reward Modeling

Reinforcement learning (RL) has been widely adopted in post-training for large language models (LLMs) at scale. Recently, the incentivization of reasoning capabilities in LLMs from RL indicates that proper learning methods could enable effective inference-time scalability. A key challenge of RL is to obtain accurate reward signals for LLMs in various domains beyond verifiable questions or artificial rules. In this work, we investigate how to improve reward modeling (RM) with more inference compute for general queries, i.e. the inference-time scalability of generalist RM, and further, how to improve the effectiveness of performance-compute scaling with proper learning methods. For the RM approach, we adopt pointwise generative reward modeling (GRM) to enable flexibility for different input types and potential for inference-time scaling. For the learning method, we propose Self-Principled Critique Tuning (SPCT) to foster scalable reward generation behaviors in GRMs through online RL, to generate principles adaptively and critiques accurately, resulting in DeepSeek-GRM models. Furthermore, for effective inference-time scaling, we use parallel sampling to expand compute usage, and introduce a meta RM to guide voting process for better scaling performance. Empirically, we show that SPCT significantly improves the quality and scalability of GRMs, outperforming existing methods and models in various RM benchmarks without severe biases, and could achieve better performance compared to training-time scaling. DeepSeek-GRM still meets challenges in some tasks, which we believe can be addressed by future efforts in generalist reward systems. The models will be released and open-sourced.

Efficient Pruning of Text-to-Image Models: Insights from Pruning Stable Diffusion

As text-to-image models grow increasingly powerful and complex, their burgeoning size presents a significant obstacle to widespread adoption, especially on resource-constrained devices. This paper presents a pioneering study on post-training pruning of Stable Diffusion 2, addressing the critical need for model compression in text-to-image domain. Our study tackles the pruning techniques for the previously unexplored multi-modal generation models, and particularly examines the pruning impact on the textual component and the image generation component separately. We conduct a comprehensive comparison on pruning the model or the single component of the model in various sparsities. Our results yield previously undocumented findings. For example, contrary to established trends in language model pruning, we discover that simple magnitude pruning outperforms more advanced techniques in text-to-image context. Furthermore, our results show that Stable Diffusion 2 can be pruned to 38.5% sparsity with minimal quality loss, achieving a significant reduction in model size. We propose an optimal pruning configuration that prunes the text encoder to 47.5% and the diffusion generator to 35%. This configuration maintains image generation quality while substantially reducing computational requirements. In addition, our work uncovers intriguing questions about information encoding in text-to-image models: we observe that pruning beyond certain thresholds leads to sudden performance drops (unreadable images), suggesting that specific weights encode critical semantics information. This finding opens new avenues for future research in model compression, interoperability, and bias identification in text-to-image models. By providing crucial insights into the pruning behavior of text-to-image models, our study lays the groundwork for developing more efficient and accessible AI-driven image generation systems