Finetune Llama 3.1, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!

We have a Qwen 2.5 (all model sizes) free Google Colab Tesla T4 notebook. Also a Qwen 2.5 conversational style notebook.

✨ Finetune for Free

All notebooks are beginner friendly! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.

Unsloth supports Free Notebooks Performance Memory use
Llama-3.1 8b ▶️ Start on Colab 2.4x faster 58% less
Phi-3.5 (mini) ▶️ Start on Colab 2x faster 50% less
Gemma-2 9b ▶️ Start on Colab 2.4x faster 58% less
Mistral 7b ▶️ Start on Colab 2.2x faster 62% less
TinyLlama ▶️ Start on Colab 3.9x faster 74% less
DPO - Zephyr ▶️ Start on Colab 1.9x faster 19% less

Qwen2.5-1.5B

Introduction

Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters. Qwen2.5 brings the following improvements upon Qwen2:

  • Significantly more knowledge and has greatly improved capabilities in coding and mathematics, thanks to our specialized expert models in these domains.
  • Significant improvements in instruction following, generating long texts (over 8K tokens), understanding structured data (e.g, tables), and generating structured outputs especially JSON. More resilient to the diversity of system prompts, enhancing role-play implementation and condition-setting for chatbots.
  • Long-context Support up to 128K tokens and can generate up to 8K tokens.
  • Multilingual support for over 29 languages, including Chinese, English, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more.

This repo contains the base 1.5B Qwen2.5 model, which has the following features:

  • Type: Causal Language Models
  • Training Stage: Pretraining
  • Architecture: transformers with RoPE, SwiGLU, RMSNorm, Attention QKV bias and tied word embeddings
  • Number of Parameters: 1.54B
  • Number of Paramaters (Non-Embedding): 1.31B
  • Number of Layers: 28
  • Number of Attention Heads (GQA): 12 for Q and 2 for KV
  • Context Length: Full 32,768 tokens

We do not recommend using base language models for conversations. Instead, you can apply post-training, e.g., SFT, RLHF, continued pretraining, etc., on this model.

For more details, please refer to our blog, GitHub, and Documentation.

Requirements

The code of Qwen2.5 has been in the latest Hugging face transformers and we advise you to use the latest version of transformers.

With transformers<4.37.0, you will encounter the following error:

KeyError: 'qwen2'

Evaluation & Performance

Detailed evaluation results are reported in this 📑 blog.

For requirements on GPU memory and the respective throughput, see results here.

Citation

If you find our work helpful, feel free to give us a cite.

@misc{qwen2.5,
    title = {Qwen2.5: A Party of Foundation Models},
    url = {https://qwenlm.github.io/blog/qwen2.5/},
    author = {Qwen Team},
    month = {September},
    year = {2024}
}

@article{qwen2,
      title={Qwen2 Technical Report}, 
      author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
      journal={arXiv preprint arXiv:2407.10671},
      year={2024}
}
Downloads last month
16
Safetensors
Model size
909M params
Tensor type
F32
·
BF16
·
U8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for osllmai-community/Qwen2.5-1.5B-bnb-4bit

Base model

Qwen/Qwen2.5-1.5B
Quantized
(32)
this model