See axolotl config
axolotl version: 0.4.1
base_model: meta-llama/Meta-Llama-3.1-405B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: ericflo/SyntheticPython-Pretrain-v1
type: completion
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/lora-out
hub_model_id: ericflo/Llama-3.1-SyntheticPython-405B-Base-LoRA
hub_strategy: end
sequence_len: 8192
sample_packing: false
pad_to_sequence_len: false
wandb_project: syntheticpython
wandb_entity:
wandb_watch:
wandb_name: llama3.1-405b
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
adapter: qlora
lora_r: 128
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch:
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|end_of_text|>
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
Llama-3.1-SyntheticPython-405B-Base-LoRA
This model was trained from scratch on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 7
- total_train_batch_size: 7
- total_eval_batch_size: 7
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ericflo/Llama-3.1-SyntheticPython-405B-Base-LoRA
Base model
meta-llama/Llama-3.1-405B