Edit model card

Gistral-16B-Q4_K_M-GGUF

This model was converted to GGUF format from ehristoforu/Gistral-16B using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew.

brew install ggerganov/ggerganov/llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo ehristoforu/Gistral-16B-Q4_K_M-GGUF --model gistral-16b.Q4_K_M.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo ehristoforu/Gistral-16B-Q4_K_M-GGUF --model gistral-16b.Q4_K_M.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

git clone https://github.com/ggerganov/llama.cpp &&             cd llama.cpp &&             make &&             ./main -m gistral-16b.Q4_K_M.gguf -n 128

Gistral 16B (Mistral from 7B to 16B)

logo

We created a model from other cool models to combine everything into one cool model.

Model Details

Model Description

  • Developed by: @ehristoforu
  • Model type: Text Generation (conversational)
  • Language(s) (NLP): English, French, Russian, German, Japanese, Chinese, Korean, Italian, Ukrainian, Code
  • Finetuned from model: mistralai/Mistral-7B-Instruct-v0.2

How to Get Started with the Model

Use the code below to get started with the model.

from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "ehristoforu/Gistral-16B"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
outputs = model.generate(inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

About merge

Base model: mistralai/Mistral-7B-Instruct-v0.2

Merge models:

  • Gaivoronsky/Mistral-7B-Saiga
  • snorkelai/Snorkel-Mistral-PairRM-DPO
  • OpenBuddy/openbuddy-mistral2-7b-v20.3-32k
  • meta-math/MetaMath-Mistral-7B
  • HuggingFaceH4/mistral-7b-grok
  • HuggingFaceH4/mistral-7b-anthropic
  • NousResearch/Yarn-Mistral-7b-128k
  • ajibawa-2023/Code-Mistral-7B
  • SherlockAssistant/Mistral-7B-Instruct-Ukrainian

Merge datasets:

  • HuggingFaceH4/grok-conversation-harmless
  • HuggingFaceH4/ultrachat_200k
  • HuggingFaceH4/ultrafeedback_binarized_fixed
  • HuggingFaceH4/cai-conversation-harmless
  • meta-math/MetaMathQA
  • emozilla/yarn-train-tokenized-16k-mistral
  • snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset
  • microsoft/orca-math-word-problems-200k
  • m-a-p/Code-Feedback
  • teknium/openhermes
  • lksy/ru_instruct_gpt4
  • IlyaGusev/ru_turbo_saiga
  • IlyaGusev/ru_sharegpt_cleaned
  • IlyaGusev/oasst1_ru_main_branch
Downloads last month
14
GGUF
Model size
16.8B params
Architecture
llama

4-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for ehristoforu/Gistral-16B-Q4_K_M-GGUF

Datasets used to train ehristoforu/Gistral-16B-Q4_K_M-GGUF