Visualize in Weights & Biases

Mistral-7B-base-simpo-qlora

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-qlora on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5543
  • Rewards/chosen: -2.0201
  • Rewards/rejected: -2.5529
  • Rewards/accuracies: 0.6215
  • Rewards/margins: 0.5328
  • Logps/rejected: -1.2765
  • Logps/chosen: -1.0100
  • Logits/rejected: -2.1352
  • Logits/chosen: -2.2380

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Logits/chosen Logits/rejected Logps/chosen Logps/rejected Validation Loss Rewards/accuracies Rewards/chosen Rewards/margins Rewards/rejected
1.6117 0.1047 400 -2.2513 -2.1455 -0.9526 -1.1212 1.6171 0.6010 -1.9052 0.3373 -2.2425
1.5829 0.2094 800 -2.2393 -2.1341 -0.9938 -1.2007 1.5888 0.6160 -1.9876 0.4139 -2.4015
1.5829 0.3141 1200 -2.2356 -2.1315 -0.9915 -1.2316 1.5656 0.6235 -1.9830 0.4802 -2.4632
1.6544 0.4187 1600 -2.2392 -2.1362 -1.0204 -1.2795 1.5601 0.6205 -2.0408 0.5182 -2.5590
1.4432 0.5234 2000 -2.2398 -2.1370 -1.0143 -1.2770 1.5560 0.6215 -2.0287 0.5254 -2.5541
1.5835 0.6281 2400 -2.2387 -2.1360 -1.0393 -1.3078 1.5582 0.6215 -2.0787 0.5369 -2.6156
1.5021 0.7328 2800 -2.2395 -2.1368 -1.0048 -1.2707 1.5540 0.6235 -2.0096 0.5317 -2.5414
1.6684 0.8375 3200 -2.2405 -2.1379 -1.0095 -1.2763 1.5542 0.6215 -2.0191 0.5334 -2.5525
1.5034 0.9422 3600 -2.2372 -2.1342 -1.0110 -1.2775 1.5546 0.6210 -2.0219 0.5331 -2.5550

Framework versions

  • PEFT 0.11.1
  • Transformers 4.42.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Yofuria/Mistral-7B-base-simpo-qlora

Adapter
(1354)
this model

Dataset used to train Yofuria/Mistral-7B-base-simpo-qlora