Edit model card

Meta-Llama-3-8B-Instruct-4bit

BitsAndBytes 4bit Quantized Model

Quantization Configuration

  • load_in_4bit: True
  • llm_int8_threshold: 6.0
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

How to use

Load Required Libraries

!pip install transformers 
!pip install peft
!pip install -U bitsandbytes

Load model directly

from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
model = AutoModelForCausalLM.from_pretrained("SwastikM/Meta-Llama-3-8B-Instruct_bitsandbytes_4bit")

messages = [
    {"role": "system", "content": "You are a Coder."},
    {"role": "user", "content": "How to ctrate a list in Python?"}
]

input_ids = tokenizer.apply_chat_template(
    messages,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=False,
    temperature=0.0
)

response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))

Output

In Python, you can create a list in several ways:

1. Using the `list()` function:

my_list = list()

This creates an empty list.

2. Using square brackets `[]`:

my_list = []

This also creates an empty list.

3. Using the `list()` function with an iterable (such as a string or a tuple):

my_list = list("hello")
print(my_list)  # Output: ['h', 'e', 'l', 'l', 'o']

4. Using the `list()` function with a range of numbers:

my_list = list(range(1, 6))
print(my_list)  # Output: [1, 2, 3, 4, 5]

5. Using the `list()` function with a dictionary:

my_dict = {"a": 1, "b": 2, "c": 3}
my_list = list(my_dict.keys())
print(my_list)  # Output: ['a', 'b', 'c']

Note that in Python, lists are mutable, meaning you can add, remove, or modify elements after creating the list.

Size Comparison

The table shows comparison VRAM requirements for loading and training of FP16 Base Model and 4bit GPTQ quantized model with PEFT. The value for base model referenced from Model Memory Calculator from HuggingFace

Model Total Size
Base Model 28 GB
4bitQuantized 5.21 GB

Acknowledgment

Model Card Authors

Swastik Maiti

Downloads last month
9
Safetensors
Model size
4.65B params
Tensor type
FP16
F32
U8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.