Ksenia Se

Kseniase

AI & ML interests

None yet

Recent Activity

Organizations

Turing Post's profile picture Journalists on Hugging Face's profile picture Social Post Explorers's profile picture Hugging Face Discord Community's profile picture Sandbox's profile picture

Kseniase's activity

upvoted an article 3 days ago
published an article 3 days ago
published an article 3 days ago
view article
Article

🌁#90: Why AI’s Reasoning Tests Keep Failing Us

By Kseniase
9
reacted to their post with 🔥🧠 3 days ago
view post
Post
3721
5 New implementations of Diffusion Models

Diffusion models are widely used for image and video generation but remain underexplored in text generation, where autoregressive models (ARMs) dominate. Unlike ARMs, which produce tokens sequentially, diffusion models iteratively refine noise through denoising steps, offering greater flexibility and speed.
Recent advancements show a shift toward using diffusion models in place of, or alongside, ARMs. Researchers also combine strengths from both methods and integrate autoregressive concepts into diffusion.

Here are 5 new implementations of diffusion models:

1. Mercury family of diffusion LLMs (dLLMs) by Inception Labs -> https://www.inceptionlabs.ai/news
It applies diffusion to text and code data, enabling sequence generation 10x faster than today's top LLMs. Now available Mercury Coder can run at over 1,000 tokens/sec on NVIDIA H100s.

2. Diffusion of Thoughts (DoT) -> Diffusion of Thoughts: Chain-of-Thought Reasoning in Diffusion Language Models (2402.07754)
Integrates diffusion models with Chain-of-Thought. DoT allows reasoning steps to diffuse gradually over time. This flexibility enables balancing between reasoning quality and computational cost.

3. LLaDA -> Large Language Diffusion Models (2502.09992)
Shows diffusion models' potential in replacing ARMs. Trained with pre-training and SFT, LLaDA masks tokens, predicts them via a Transformer, and optimizes a likelihood bound. LLaDA matches key LLM skills, and surpasses GPT-4o in reversal poetry.

4. LanDiff -> The Best of Both Worlds: Integrating Language Models and Diffusion Models for Video Generation (2503.04606)
This hybrid text-to-video model combines autoregressive and diffusion paradigms, introducing a semantic tokenizer, an LM for token generation, and a streaming diffusion model. LanDiff outperforms models like Sora.

5. General Interpolating Discrete Diffusion (GIDD) -> Generalized Interpolating Discrete Diffusion (2503.04482)
A flexible noising process with a novel diffusion ELBO enables combining masking and uniform noise, allowing diffusion models to correct mistakes, where ARMs struggle.
  • 3 replies
·
upvoted an article 4 days ago
view article
Article

🦸🏻#13: Action! How AI Agents Execute Tasks with UI and API Tools

By Kseniase
4
published an article 4 days ago
view article
Article

🦸🏻#13: Action! How AI Agents Execute Tasks with UI and API Tools

By Kseniase
4
reacted to clem's post with 👍 4 days ago
view post
Post
6968
I was chatting with @peakji , one of the cofounders of Manu AI, who told me he was on Hugging Face (very cool!).

He shared an interesting insight which is that agentic capabilities might be more of an alignment problem rather than a foundational capability issue. Similar to the difference between GPT-3 and InstructGPT, some open-source foundation models are simply trained to 'answer everything in one response regardless of the complexity of the question' - after all, that's the user preference in chatbot use cases. Just a bit of post-training on agentic trajectories can make an immediate and dramatic difference.

As a thank you to the community, he shared 100 invite code first-come first serve, just use “HUGGINGFACE” to get access!
·
upvoted an article 4 days ago
view article
Article

🦸🏻#12: How Do Agents Learn from Their Own Mistakes? The Role of Reflection in AI

By Kseniase
5
published an article 4 days ago
view article
Article

🦸🏻#12: How Do Agents Learn from Their Own Mistakes? The Role of Reflection in AI

By Kseniase
5
replied to their post 4 days ago
posted an update 4 days ago
view post
Post
3721
5 New implementations of Diffusion Models

Diffusion models are widely used for image and video generation but remain underexplored in text generation, where autoregressive models (ARMs) dominate. Unlike ARMs, which produce tokens sequentially, diffusion models iteratively refine noise through denoising steps, offering greater flexibility and speed.
Recent advancements show a shift toward using diffusion models in place of, or alongside, ARMs. Researchers also combine strengths from both methods and integrate autoregressive concepts into diffusion.

Here are 5 new implementations of diffusion models:

1. Mercury family of diffusion LLMs (dLLMs) by Inception Labs -> https://www.inceptionlabs.ai/news
It applies diffusion to text and code data, enabling sequence generation 10x faster than today's top LLMs. Now available Mercury Coder can run at over 1,000 tokens/sec on NVIDIA H100s.

2. Diffusion of Thoughts (DoT) -> Diffusion of Thoughts: Chain-of-Thought Reasoning in Diffusion Language Models (2402.07754)
Integrates diffusion models with Chain-of-Thought. DoT allows reasoning steps to diffuse gradually over time. This flexibility enables balancing between reasoning quality and computational cost.

3. LLaDA -> Large Language Diffusion Models (2502.09992)
Shows diffusion models' potential in replacing ARMs. Trained with pre-training and SFT, LLaDA masks tokens, predicts them via a Transformer, and optimizes a likelihood bound. LLaDA matches key LLM skills, and surpasses GPT-4o in reversal poetry.

4. LanDiff -> The Best of Both Worlds: Integrating Language Models and Diffusion Models for Video Generation (2503.04606)
This hybrid text-to-video model combines autoregressive and diffusion paradigms, introducing a semantic tokenizer, an LM for token generation, and a streaming diffusion model. LanDiff outperforms models like Sora.

5. General Interpolating Discrete Diffusion (GIDD) -> Generalized Interpolating Discrete Diffusion (2503.04482)
A flexible noising process with a novel diffusion ELBO enables combining masking and uniform noise, allowing diffusion models to correct mistakes, where ARMs struggle.
  • 3 replies
·
upvoted an article 7 days ago
view article
Article

Everything You Need to Know about Knowledge Distillation

By Kseniase and 1 other
16
published an article 7 days ago
view article
Article

Everything You Need to Know about Knowledge Distillation

By Kseniase and 1 other
16
upvoted an article 10 days ago
view article
Article

🌁#90: Why AI’s Reasoning Tests Keep Failing Us

By Kseniase
9