Edit model card

MedJamba

Multilingual Medical Model Based On Jamba

πŸ‘¨πŸ»β€πŸ’»Github β€’πŸ“ƒ Paper

Apollo

🌈 Update

  • [2024.04.25] MedJamba Model is publishedοΌπŸŽ‰

Results

πŸ€— Apollo-0.5B β€’ πŸ€— Apollo-1.8B β€’ πŸ€— Apollo-2B β€’ πŸ€— Apollo-6B β€’ πŸ€— Apollo-7B β€’ πŸ€— Apollo-34B β€’ πŸ€— Apollo-72B

πŸ€— MedJamba

πŸ€— Apollo-0.5B-GGUF β€’ πŸ€— Apollo-2B-GGUF β€’ πŸ€— Apollo-6B-GGUF β€’ πŸ€— Apollo-7B-GGUF

Apollo

Dataset & Evaluation

  • Dataset πŸ€— ApolloCorpus

    Click to expand

    Apollo

    • Zip File
    • Data category
      • Pretrain:
        • data item:
          • json_name: {data_source}{language}{data_type}.json
          • data_type: medicalBook, medicalGuideline, medicalPaper, medicalWeb(from online forum), medicalWiki
          • language: en(English), zh(chinese), es(spanish), fr(french), hi(Hindi)
          • data_type: qa(generated qa from text)
          • data_type==text: list of string
            [
              "string1",
              "string2",
              ...
            ]
            
          • data_type==qa: list of qa pairs(list of string)
            [
              [
                "q1",
                "a1",
                "q2",
                "a2",
                ...
              ],
              ...
            ]
            
      • SFT:
        • json_name: {data_source}_{language}.json
        • data_type: code, general, math, medicalExam, medicalPatient
        • data item: list of qa pairs(list of string)
            [
              [
                "q1",
                "a1",
                "q2",
                "a2",
                ...
              ],
              ...
            ]
          
  • Evaluation πŸ€— XMedBench

    Click to expand
    • EN:

      • MedQA-USMLE
      • MedMCQA
      • PubMedQA: Because the results fluctuated too much, they were not used in the paper.
      • MMLU-Medical
        • Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
    • ZH:

      • MedQA-MCMLE
      • CMB-single: Not used in the paper
        • Randomly sample 2,000 multiple-choice questions with single answer.
      • CMMLU-Medical
        • Anatomy, Clinical_knowledge, College_medicine, Genetics, Nutrition, Traditional_chinese_medicine, Virology
      • CExam: Not used in the paper
        • Randomly sample 2,000 multiple-choice questions
    • ES: Head_qa

    • FR: Frenchmedmcqa

    • HI: MMLU_HI

      • Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine
    • AR: MMLU_Ara

      • Clinical knowledge, Medical genetics, Anatomy, Professional medicine, College biology, College medicine

Results reproduction

Click to expand
  1. Download Dataset for project:

    bash 0.download_data.sh
    
  2. Prepare test and dev for specific model:

    • Create test data for with special token, you can use ./util/check.ipynb to check models' special tokens
    bash 1.data_process_test&dev.sh
    
  3. Prepare train data for specific model (Create tokenized data in advance):

    • You can adjust data Training order and Training Epoch in this step
    bash 2.data_process_train.sh
    
  4. Train the model

    • Multi Nodes refer to ./scripts/multi_node_train_*.sh
    pip install causal-conv1d>=1.2.0
    pip install mamba-ssm
    

    Node 0:

    bash ./scripts/3.multinode_train_jamba_rank0.sh
    

    ... Node 4:

    bash ./scripts/3.multinode_train_jamba_rank4.sh
    
  5. Evaluate your model: Generate score for benchmark

    bash 4.eval.sh
    
  6. Evaluate your model: Play with your ckpts in bash

    python ./src/evaluate/cli_demo.py --model_name='./ckpts/your/path/tfmr'
    

To do

  • Long Context Capability Evaluation and new Long-Med Benchmark

Acknowledgment

Citation

Please use the following citation if you intend to use our dataset for training or evaluation:

@misc{wang2024apollo,
   title={Apollo: Lightweight Multilingual Medical LLMs towards Democratizing Medical AI to 6B People},
   author={Xidong Wang and Nuo Chen and Junyin Chen and Yan Hu and Yidong Wang and Xiangbo Wu and Anningzhe Gao and Xiang Wan and Haizhou Li and Benyou Wang},
   year={2024},
   eprint={2403.03640},
   archivePrefix={arXiv},
   primaryClass={cs.CL}
}
Downloads last month
24
Safetensors
Model size
51.6B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.